

SWH training: Presentation

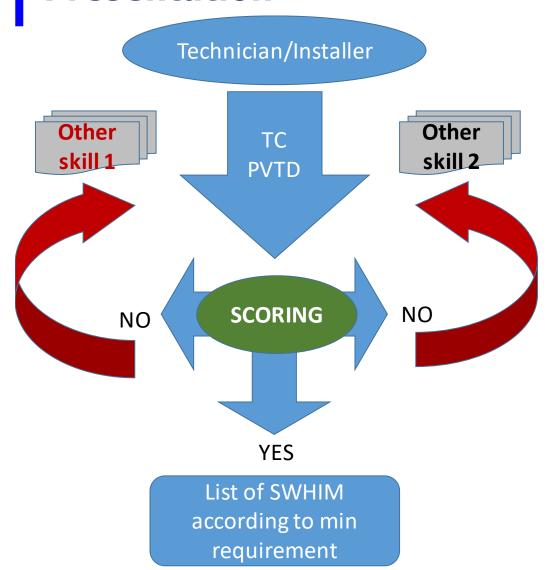
Training of SWH installer & maintainer

Solar Water Heaters training Presentation of the frame

Objective of the introduction:

- ✓ Be informed on SWH training program
- ✓ Introduction to SHIP project and the benefit form the training and the impact of the training on the SHIP project
- ✓ Have knowledge on 5 days training
- ✓ Be aware with the rules

Duration


- ✓ From: 09:00 to 09:30
- ✓ Close phones
- ✓ Don't speak to each other

Solar Water Heaters training Presentation

Objective of the training:

- ✓ The training is targeting the existing technicians aiming
 to become qualified installers in the following segment of
 SWH market:
 - Installation of individual SWH (1 to 4 m²)
 - Installations of SWH system from 4 m² and up to 30 m² of collectors
 - Installation of SWH system more than 30 m² of collectors

Solar Water Heaters training Presentation

Competency based program for existing installers (5 days) ToT

Minimum requirements for training Centres

Introduce SWH assessment

- Theory
- Practice
- interview

Qualified SWH installer and maintainer

YE7

The training is targeting the existing technicians aiming to become qualified installers in the :following segment of SWH market

Installation of individual SWH (1 to 4 m²) .1

Installations of SWH system from 4 m² and up to 30 m² of collectors .2

Installation of SWH system more than 30 m² of collectors .3

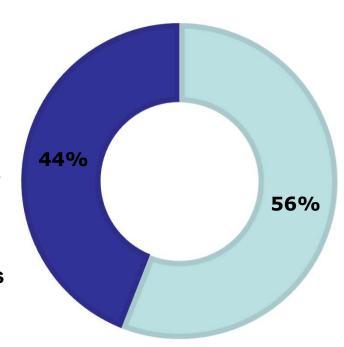
Yahia El-Masry, 03-Aug-20

Solar Water Heaters training Presentation

5 days training:

- √ 4 days training face to face
- ✓ Training is theory and practice
- ✓ Last day is for examination

Timing


- ✓ Day 1 (T): Definition, technologies, site survey, installation techniques
- ✓ Day 2 (P+T): SWH Installation, commissioning and best practices
- ✓ Day 3 (T+P): Forced system manipulation and installation
- ✓ Day 4 (P+T): Maintenance and repair, market organizational scheme
- ✓ Day 5 (T+P): Examination (theory and practice)

Solar Water Heaters training Presentation

SWH TRAINING COURSE

■ Practical ■ Theory

Solar radiation
SWH Definition
SWH technology
Performs site survey
Installation techniques
Maintenance overview
Installation of TSWH
Installation of FSWH
Maintenance diagnosis
Theory exam

Installation of TSWH
system
Installation of forced SWH
system
Safety, tools
Measurement
Maintenance and diagnosis
of breakdowns
Procedural framework
Practical examination

56% Practice = 16,75 h (10 blocks) / 44% Theory = 13,25 h (8 blocks)

Solar Water Heaters training Presentation (day 1)

Timing	Day 1
Trainer	
9.00-10.30	Welcoming Participants Participants presentation Participants pre-evaluation World, regional and Egyptian solar thermal context
10.30-10.45	Coffee break
10.45-12.30	Solar radiation: -Solar data, orientation, inclination, solar power, sun-earth relationship, atmospheric effects
	SWH Definition -Thermosiphon and forced circulation definition - Components of SWH and accessories SWH technology (1) - Direct and indirect systems
12.30-13.30	Lunch break

Solar Water Heaters training Presentation (day 1)

13.30-15.00	SWH technology (2)
	- Difference between thermosiphon and forced circulation systems
	- The role and function of each component and accessory
	Technical drawings:
	- Interpret different types of designs and diagrams
	-Identify the specification of the pipes
15.00-15.15	Coffee break
15.15-17.00	Performs site survey
	- Parameters optimizing the location and the performance of a SWH
	- Check list of hazards in the site
	- The needs depending on existing situation
	Installation techniques
	- Check list of required materials, tools and safety equipment
	- Preparatory work for the installation
	- Overview of the different steps of SWH installation
	Technical advice and requirements for a good installation
	Overview of Maintenance and repair
	- Preventive and curative maintenance requirements
	- Diagnosis of breakdowns and failures
	Diagnosis of breakdowns and failures
	End of the Day 1
	Lilu of the Day 1

Solar Water Heaters training Presentation (day 2)

Timing	Day 2
Trainer	
9.00 - 10.30	Installation of SWH system (1)
	- Pre-installation preparation in site
	- Components inspection in site
	- Metallic structure assembling
	✓ Structure for collectors
	✓ Structure for tank
	✓ Stone concrete fixation
10.30 - 10.45	Coffee break
10.45- 12.30	Installation of SWH system (2)
	- Collector installation
	✓ Individual collector
	✓ Series collectors
	- Tank installation
	✓ Horizontal position
✓ Water pressure	✓ Water pressure
	- Connection between different components
	✓ Cold water connection
	✓ Hot water connection
12.30 - 13.30	Lunch break

Solar Water Heaters training Presentation (day 2)

Installation SWH system (3)	
- Installation of accessories for SWH, before commissioning	
✓ Safety valve for over pressure protection	
✓ MG Anode for water prevention	
✓ Thermostat for temperature setting	
✓ Backup system for heating water	
✓ Electrical connection	
✓ Earth for equipment and person protection	
Coffee break	
Installation SWH system (3)	
- Commissioning the installation	
- Best practices for installation of SWH	
End of Day 2	

Solar Water Heaters training Presentation (day 3)

Timing	Day 3
Trainer	
9.00 - 10.30	Installation of forced SWH system - What is it? - Collector installation drawings ✓ Individual collector ✓ Series collectors - Tank installation drawings ✓ Horizontal position ✓ Water pressure ✓ Circulator
10.30 - 10.45	Coffee break
10.45- 12.30	Installation of forced SWH system - Collector installation ✓ Individual collector ✓ Series collectors - Tank installation ✓ Horizontal position ✓ Water pressure ✓ Circulator
12.30 - 13.30	Lunch break

Solar Water Heaters training Presentation (day 3)

13.30 - 15.00	 Installation of forced SWH system Connection between different components ✓ Cold water connection ✓ Hot water connection
15.00 - 15.15	Coffee break
15.15 - 17.00	Safety equipment ✓ Individual ✓ Collective Tools ✓ Individual tools ✓ Collective tools Measurement devices Commissioning the installation Best practices End of Day 3

Solar Water Heaters training Presentation (day 4)

Timing	Day 4	
Trainer		
9.00 - 10.30	Maintenance and diagnosis of breakdowns	
	- Preventive maintenance	
	✓ Guarantee	
	✓ List of preventive maintenance✓ How to do it??	
	TIOW to do it!!	
10.30 - 10.45	Coffee break	
10.45- 12.30	Maintenance and diagnosis of breakdowns	
	- Curative maintenance	
	✓ List of problems✓ Solutions	
	✓ Solutions	
12.30 - 13.30		

Solar Water Heaters training Presentation (day 4)

13.30 - 15.00	Maintenance and diagnosis of breakdowns
	- Trouble-shooting and repair techniques
15.00 - 15.15	Coffee break
15.15 - 17.00	Procedural framework
	- Technical specification relating to the SWH components
	eligibility
	- Conditions for adherence to the Quality-Sol charter
	- Guideline of best practices SWH installation and
	maintenance
	Procedural framework
	- Supplier/installer contract
	- Minimum requirements for installer/maintainer eligibility
	- Technical specification related to supplier eligibility
	End of Day 4

Solar Water Heaters training Presentation of examination conditions

Last day of training:

- ✓ Examination : part 1
 - Theory Post evaluation
 - 40 QCM/2:00 hours
- ✓ Examination: part 2
 - Practical Post evaluation
 - Real installation and maintenance /2:00 hours)

Score

✓ Written: 40 points

✓ Practical: 50 points

✓ One to one interview: 10 points

Solar Water Heaters training Presentation of rules

Rules:

- ✓ Absence: more than 10% of the training duration, the candidate is deemed guilty
- ✓ Plagiarism: work that has been copied from that of another person (whether published or not) without attribution, or the presentation of another's work as if it were his/her own.
- ✓ Purchasing material/work undertaken by others and presenting as own work.
- ✓ Selling material: Selling or offering to sell, by whatever means, material, or using other inducements, to assist a candidate in producing work for assessment.
- ✓ Collusion: where a candidate undertakes work with or for others, without acknowledgement (e.g. submits as entirely his/her own, work completed in collaboration with another person).
- ✓ Falsifying data: that is where a candidate presents data based on work which
 a he/she claims to have carried out but which he/she has invented or obtained
 by unfair means.

SWH: International context

Training of SWH installer & maintainer

Solar Water Heaters International context

Objective:

- ✓ Knowledge on renewable energy Technologies
- ✓ Be informed on SWH in the word
- ✓ Have knowledge on main SWH technologies
- ✓ Who are the Champions in the word?

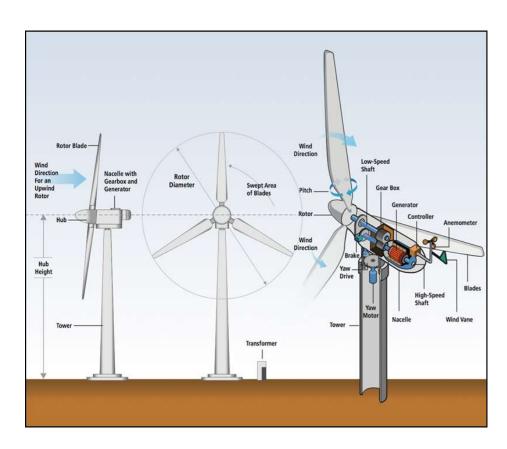
Duration

- ✓ 1:30 hour
- ✓ From: 09:00 to 10:30
- ✓ Close phones
- ✓ Don't speak to each other

Renewable energy introduction

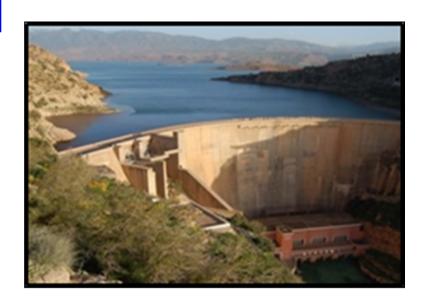
Why Renewable energy?

☐ The development and demographic growth of the continents	
Energy consump	tion increase
	Blobal warming due to the greenhouse effect luclear waste management
☐ Energy sources diversifie	cation Energy independence
☐ Job creation	n of new professional streams

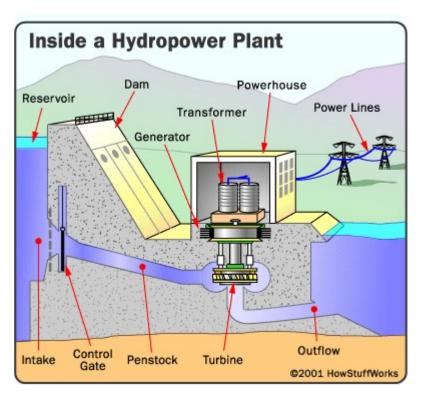

Renewable energy Technologies

- **❖**Wind power
- Hydro-electricity power
- Concentrated solar power
- **❖** Photovoltaic
- **Biomass**
- **❖**Solar thermal

Wind power Technology

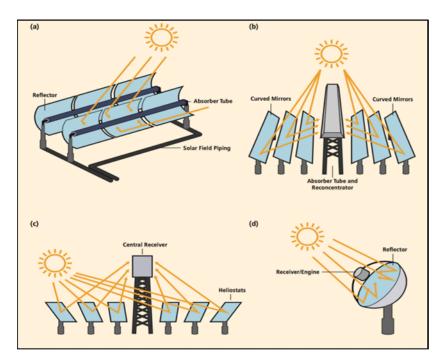


- Carbon free energy which use wind to provide the mechanical power through wind turbines to turn electric generators
- Intermittent energy
- Energy lost if it is not used
- The cheapest of the renewable options

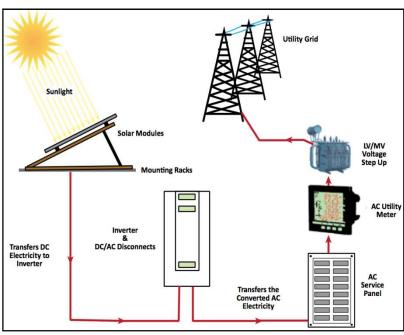


Source: IPCC, 2012, p. 552

Hydro-electricity Technology


 Is produced when moving water rotates a turbine shaft; this movement is converted to electricity with an electrical generator

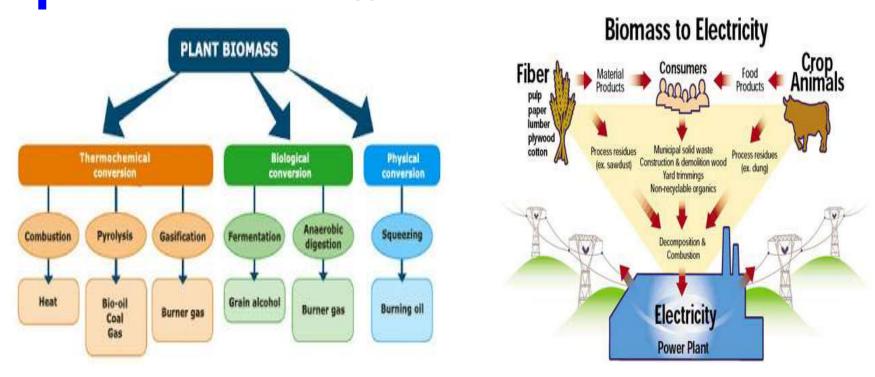
Concentrated solar Technology



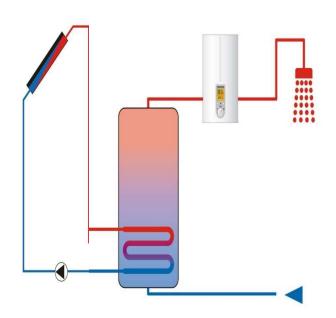
Source: IPCC, 2012, p. 356

- It consists of concentrating solar radiation by using mirrors or lenses to heat a fluid to a high temperature and thus produce electricity or supply energy to industrial processes
- Carbon-free energy and consumes a lot of soil
- Consumes water for water cooling (air system is more expensive)
- Intermittent technology and expandable

Photovoltaic Technology

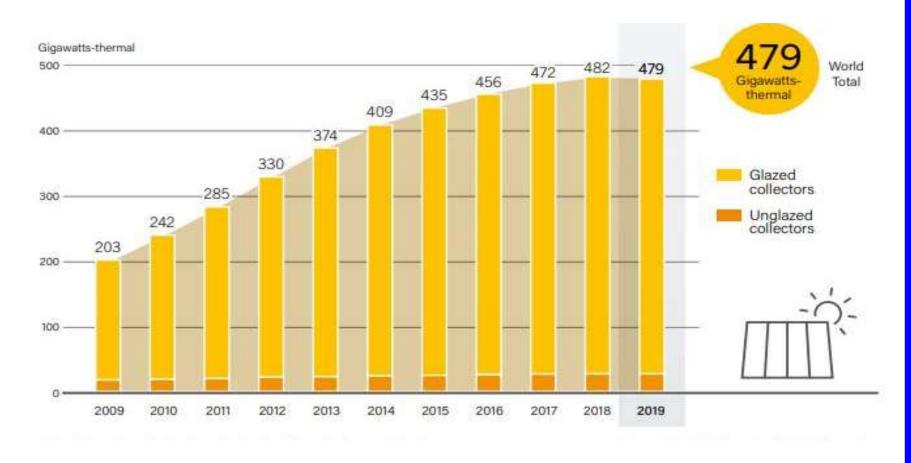


Source: IFC, 2015, p. 24


- Generating electric power by using solar cells to convert energy from the sun into a flow of electrons by the photovoltaic effect. Solar cells produce direct current electricity from sunlight which can be used to power equipment
- Carbon-free energy and consumes a lot of soil
- Intermittent technology and expandable

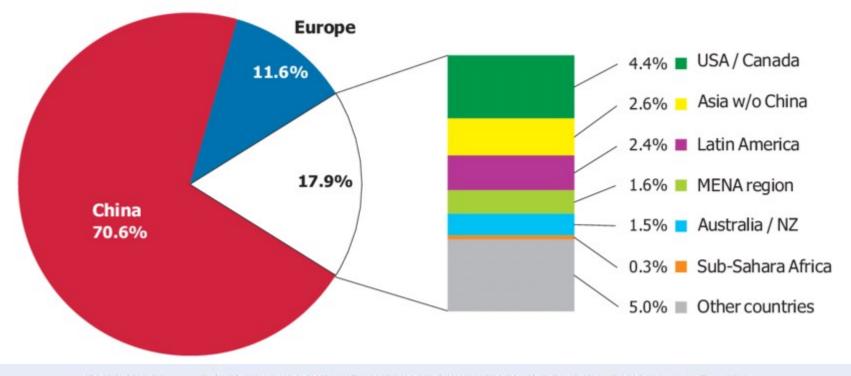
Biomass Technology

- It is plant or animal material used for energy production (electricity or heat), or in various industrial processes as raw substance for a range of products. It can be purposely grown energy crops (e.g. miscanthus, switchgrass), wood or forest residues, waste from food crops (wheat straw, bagasse), horticulture (yard waste), food processing (corn cobs), animal farming (manure, rich in nitrogen and phosphorus), or human waste from sewage plants
- There are three conversion technologies: thermochemical, biological and physical conversion


Solar thermal technology

- Use the sun energy to raise the temperature of a fluid to a useful temperature (example: heating domestic water at 45 °C)
- The temperature range can be as low as 25°C for a swimming pool up to 250°C to raise steam
- Carbon-free energy
- Intermittent technology and expandable

Solar Water Heating collectors capacity



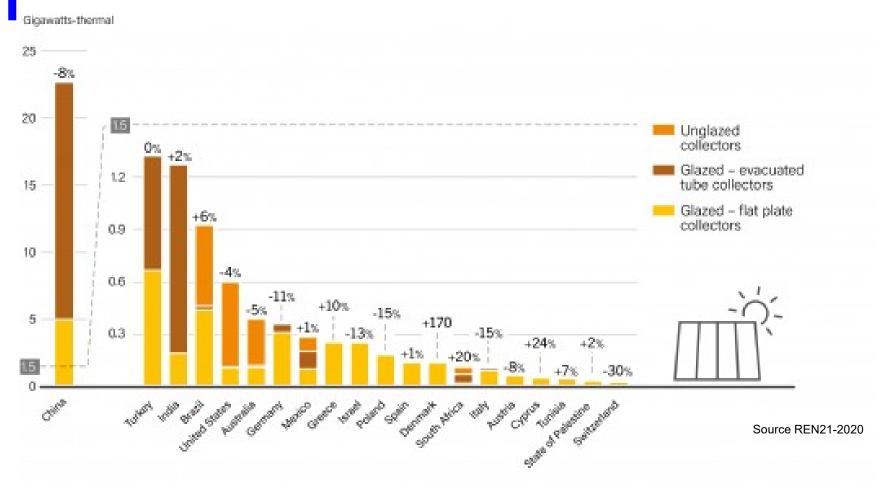
- ☐ An estimated of 479 GWth was installed by the end of 2019
- ☐ Glazed collectors cover 93% of the total market

Need high resoultion picture Yahia El-Masry, 03-Aug-20

YE2

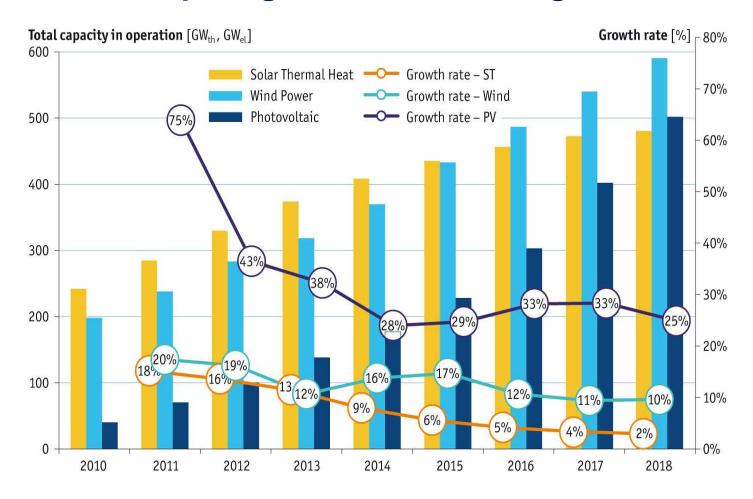
Share of the total installed capacity

Sub-Sahara Africa: Botswana, Burkina Faso, Cape Verde, Ghana, Lesotho, Mauritius, Mozambique, Namibia, Senegal, South Africa, Zimbabwe


Asia w / o China: India, Japan, South Korea, Taiwan, Thailand Latin America: Argentina, Barbados, Brazil, Chile, Mexico, Uruguay

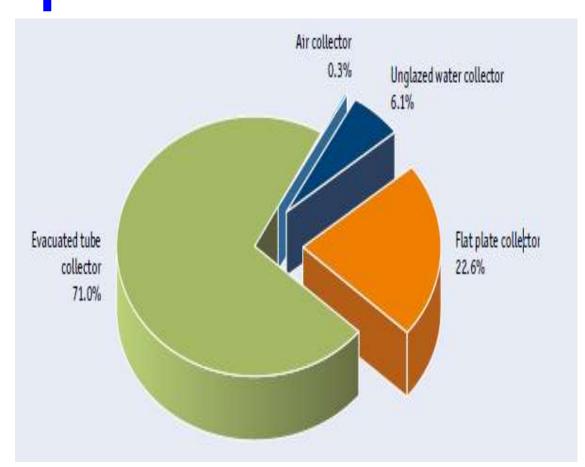
Europe: EU 28, Albania, Northern Macedonia, Norway, Russia, Switzerland, Turkey
MENA countries: Israel, Jordan, Lebanon, Morocco, Palestinian Territories, Tunisia

Source Solar Heat Worlwide -2019


The vast majority of the total capacity in operation was installed in China (334.5 GWth)

Added capacity by country- 2019

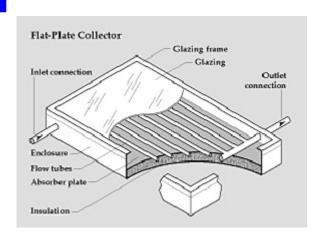
An estimated 31.3 gigawatts-thermal (GWth) of glazed (including flat plate and vacuum tube technology) and unglazed solar collectors was added globally in 2019

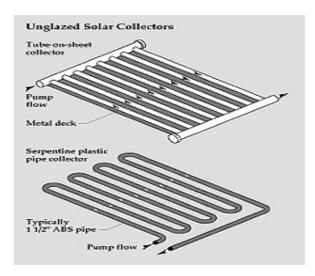

Growth comparing to other technologies

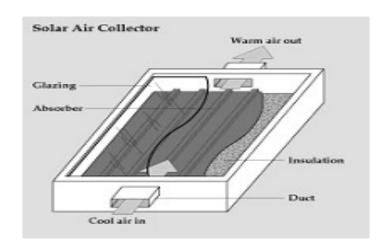
Solar thermal development stagnates compared to the other two technologies:

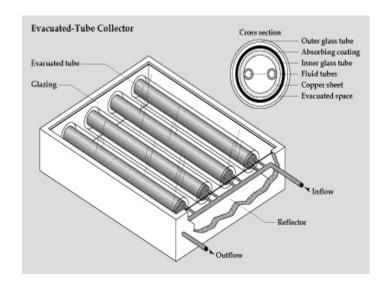
Wind and Photovoltaic

Total capacity distribution by collector type-2017

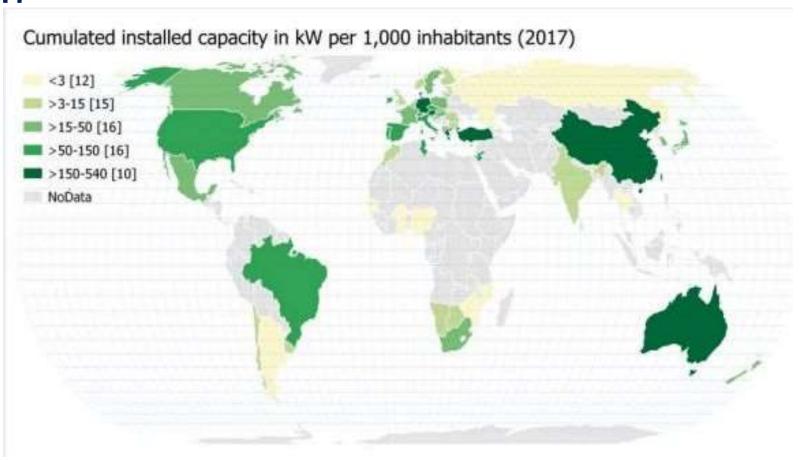


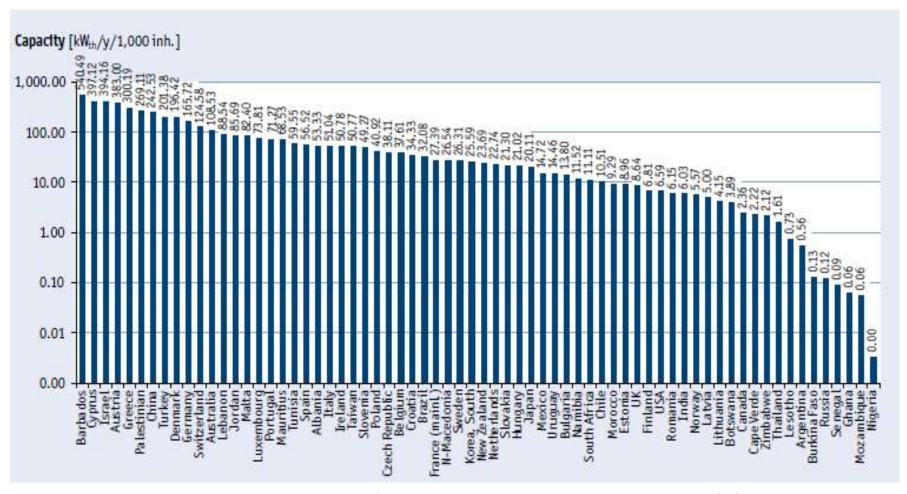

- ☐ Air collector: use solar radiation to actively deliver warm air into buildings
- ☐ Unglazed water collector: it's an absorber without glass and insulation
- ☐ Flat plate collector: is a device to collect solar energy and transform it into thermal energy (low-grade energy) by using water or antifreeze as a working fluid
- Evacuated tube collector: Consists of single tubes that are connected to a header pipe. To reduce heat losses of the water-bearing pipes to the ambient air, each single tube is evacuated


Source: Solar Heat Worlwide -2019

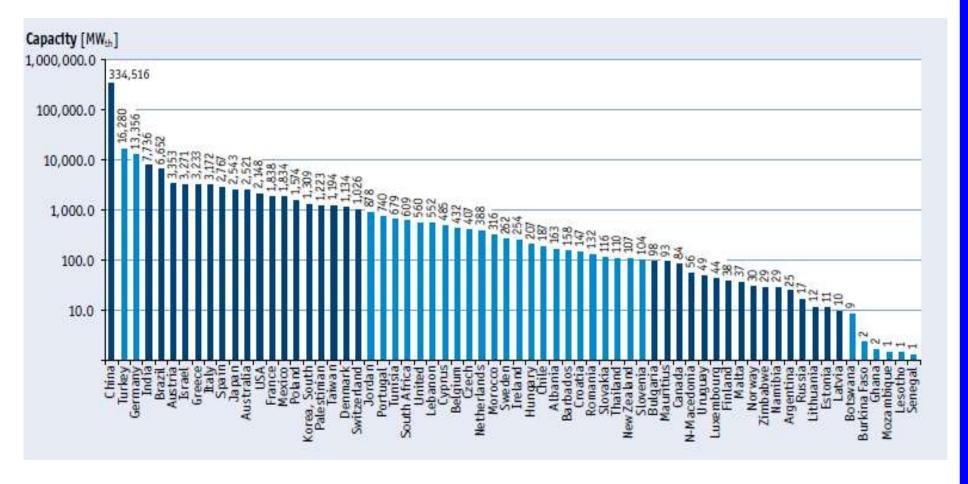

Evacuated tube collectors were the predominant solar thermal collector technology, followed by flat plate collectors with 22.6 %

Technology collectors types

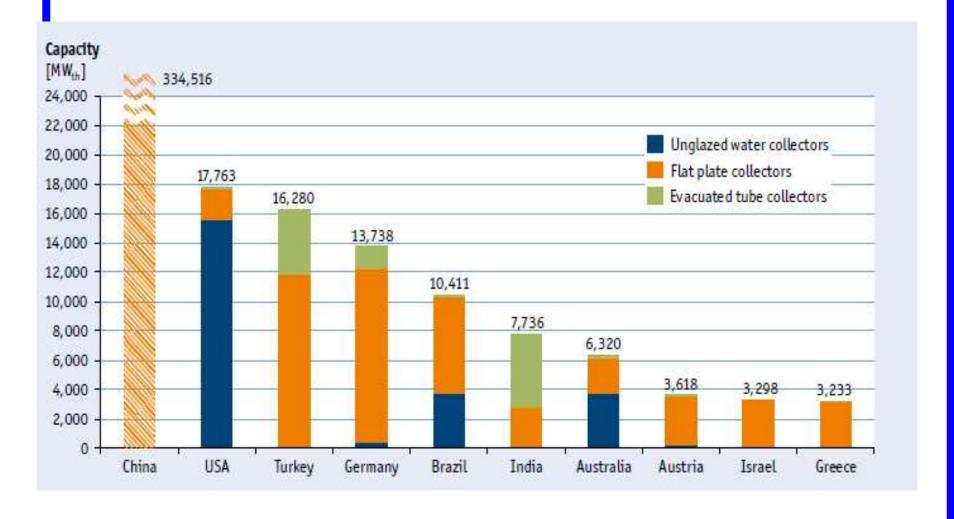




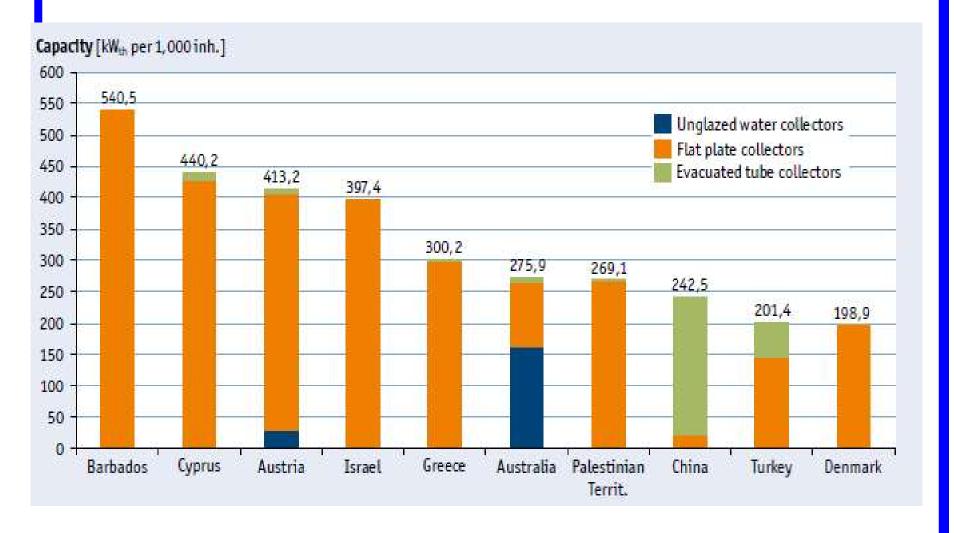
Cumulated installed capacity in KW per 1000 inhabitant-2017


The main cumulated installed capacity concentration is in Asia (China), Australia and Europ

Ranking of Cumulated installed capacity in KW per 1000 inhabitant for glazed collector-2017

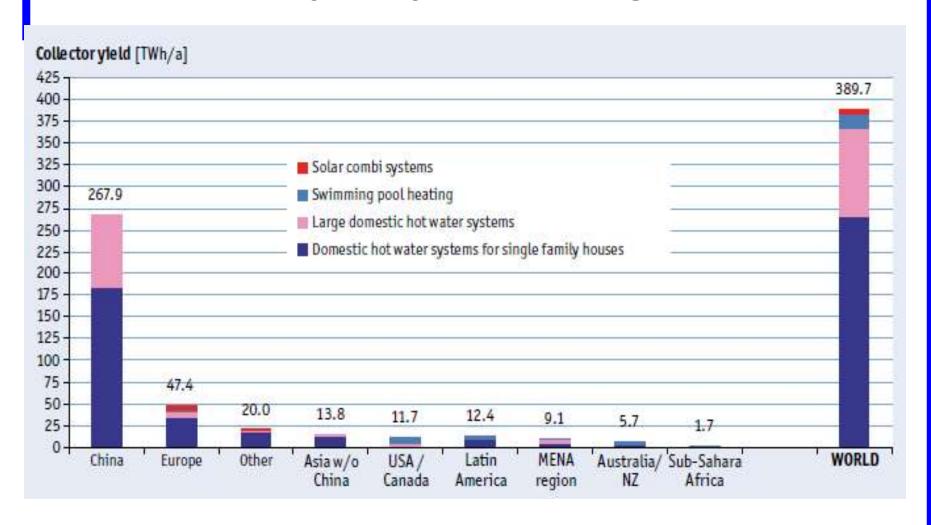

Lebanon is ranked the first arabic country with 85 kWth/y/1,000 inh

Ranking of cumulated installed capacity for glazed collector-2017


With 334.5 GWth, China was once again by far the leader in terms of total installed capacity of glazed water collectors in 2017

Top 10 countries -2017

The United States market is dominated by unglazed water collectors (swimming pool heating application)


Top 10 countries per 1000 inhabitant-2017

Barbados is the leader country in cumulated glazed and un glazed water collector capacity in operation in 2017 per 1,000 in habitants

Annual collector yield by economic region-2017

Solar thermal collector yields amounted to 389.7 TWh worldwide and the major share, 68 %, was contributed by domestic hot water applications for single family houses

-	ı		I _	7	7
3	ш	O	ıe	_	_

Need high resoultion picture
Yahia El-Masry, 03-Aug-20

Need the statictics in the commerical and the industial
Yahia El-Masry, 03-Aug-20

YE13

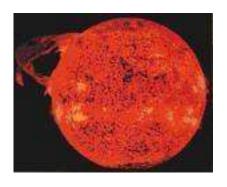
YE14

SWH: Solar radiation and orientation

Training of SWH installer & maintainer

Solar Water Heaters Solar radiation and orientation

Objective:

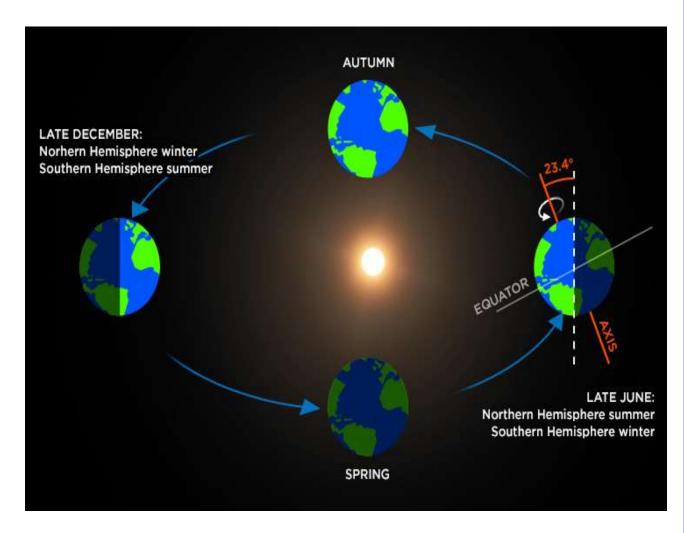

- ✓ Be informed on solar potential
- ✓ Have knowledge on solar thermal transformation
- ✓ How to get solar hot water?
- ✓ Why south is the best orientation for SWH?

Duration

- ✓ 0:30 hour
- ✓ From: 10:45 to 11:15
- ✓ Close phones
- ✓ Don't speak to each other

Solar radiation & orientation

THE SUN



Principal characteristics			
Constitution	Helium (74%) Hydrogen (24%)		
Average diameter	1 392 000 km (12 000 km for earth)		
Mass	301,9891 x 10 ³⁰ kg		
Distance/Earth	150 000 000 km		
Life expectancy	5 à 10 milliards years		
Actual age	4,5 milliards years		

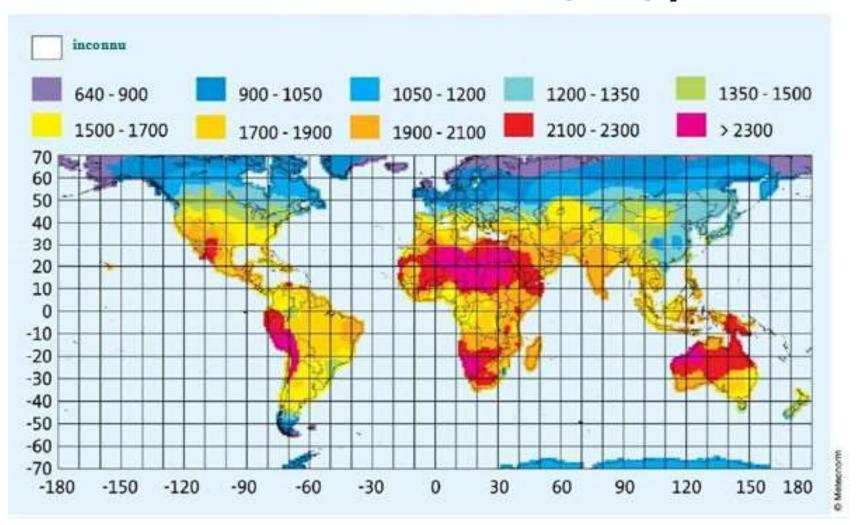
- Surface temperature is 5,760 K
- The irradiance is 1367 W / m²

Solar radiation & orientation Earth's orbit around the sun

- ☐ The earth orbits around the sun describing an ellipse in 365 days and 1/4
- ☐ The earth orbits around its own axis in 24 hours

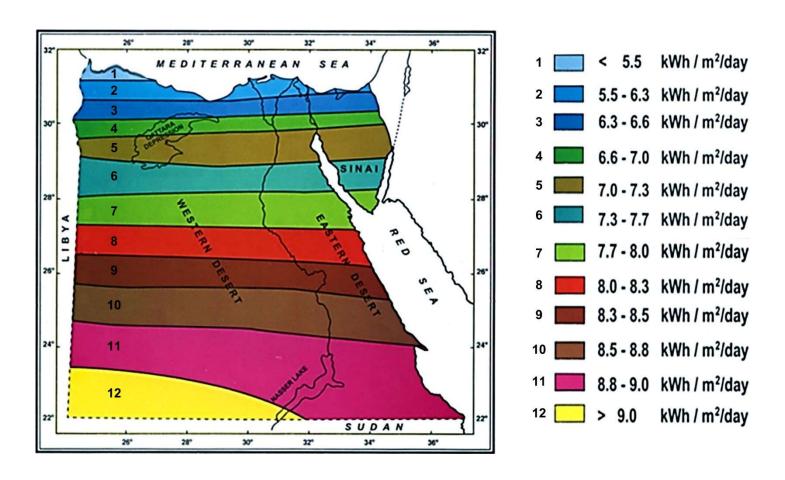
Solar radiation & orientation Sun quantity definition

- Irradiance (G) is the <u>radiant</u>


 <u>flux</u> received by a surface per
 unit area. Power
 - The SI unit is W/m²
- Irradiation (H) The total quantity of energy incident on a surface
 - The SI unit is kWh/m²
- A clear and sunny day anywhere on earth
 - Irradiance ≈ 1 000 W/m²
 - Irradiation ≈ 8 kWh/m²

- **Solar irradiation** the quantity of solar energy incident by the collector in a certain time
 - kWh/day; kWh/year
- Specific solar irradiation the quantity of solar energy incident by 1 m² of collector surface in a certain time
 - kWh/m²/day; kWh/m²/year

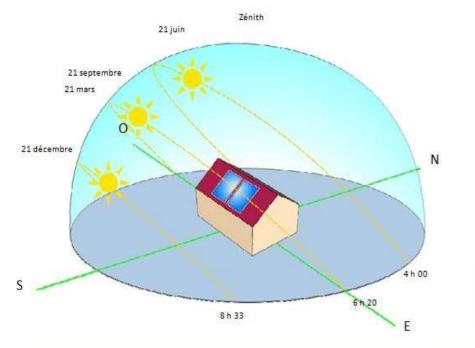
Solar radiation & orientation Calculation


- ☐ The solar power incident on a surface averages 400 W/m2 for 12 hours. How much solar energy is received?
- 400 W/m2 x 12 hours = 4800 Wh/m2 = 4.8 kWh/m2
- ☐ The amount of solar energy collected on a surface over 8 hours is 4 kWh/m2. What is the average solar power received over this period?
- 4 kWh/m2 / 8 hours = 0.5 kW/m2 = 500 W/m2

Solar radiation & orientation World solar irradiation in KWh/m2/year

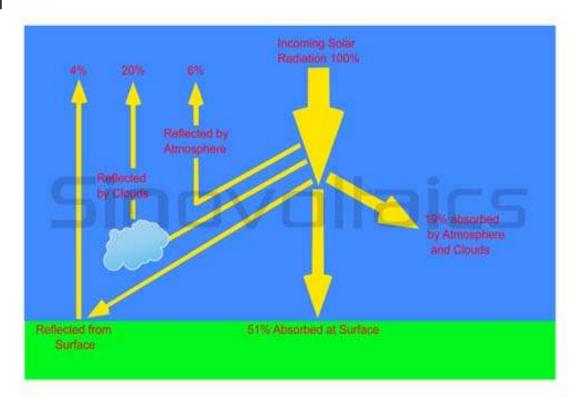
Best regions are: western and southern Africa, Australia, Peru and Chile with more than 2300 KWh/m2/year

Solar radiation & orientation Egyptian solar irradiation in KWh/m2/Day


Between 5 and 10 kWh / m² / day of average irradiation 3,200 hours of sunshine per year

Solar radiation & orientation Geometry of the sun height

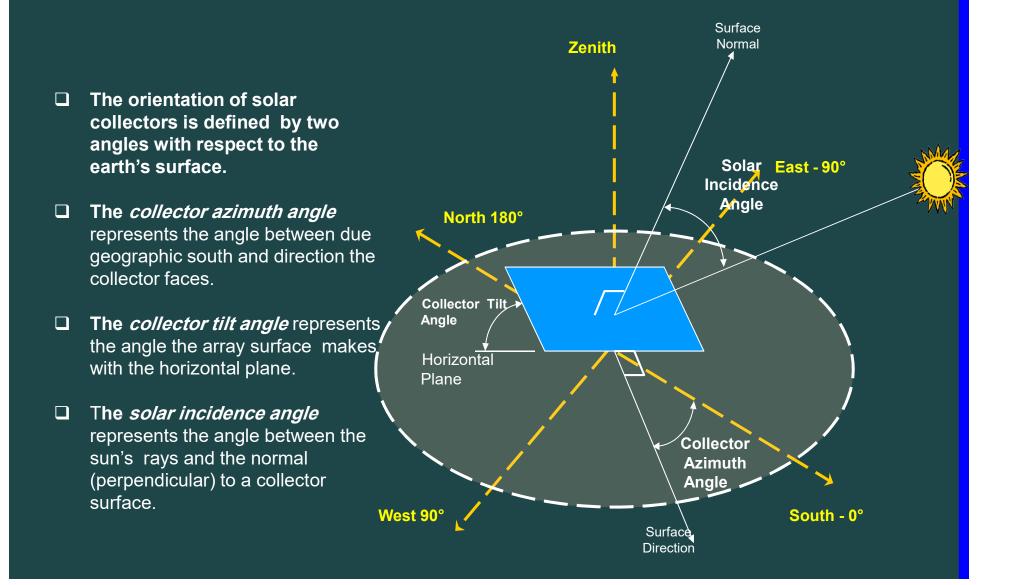
- Sun average height:21 mars / September = 90° latitude
- Sun maximum height:21 June = 90° latitude + 23.5°
- Sun minimum height:21 December = 90° latitude 23.5°



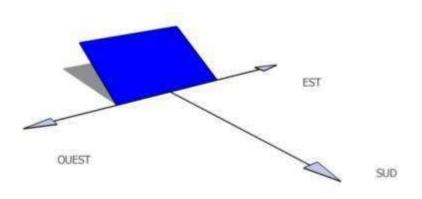
Solar radiation & orientation Components of solar radiation

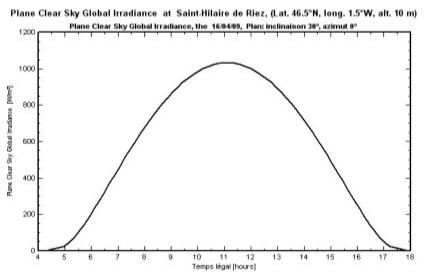
The total radiation is composed of the following three components:

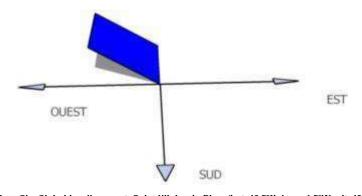
- **1.Direct Radiation** (the radiation which comes directly from the sun)
- **2.Diffused Radiation** (the radiation which is diffused by the sky, layers of atmosphere and other surroundings)
- **3.Reflected Radiation** (the radiation which is reflected back by the lake, seas and other water bodies)

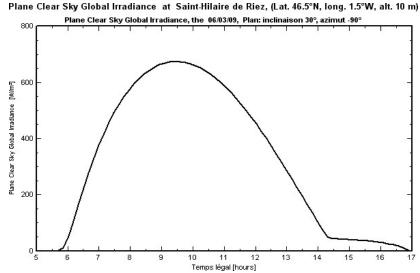


Solar radiation & orientation Irradiation depends on climatic conditions

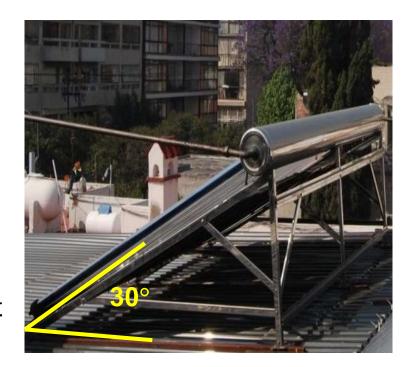


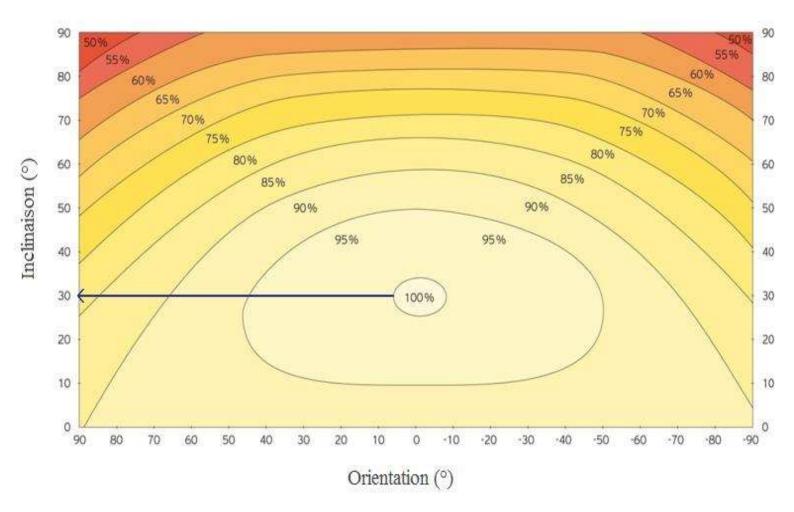

Example :For cloudy weather, the solar irradiation is about 200 W/m2


Solar radiation & orientation Collector orientation



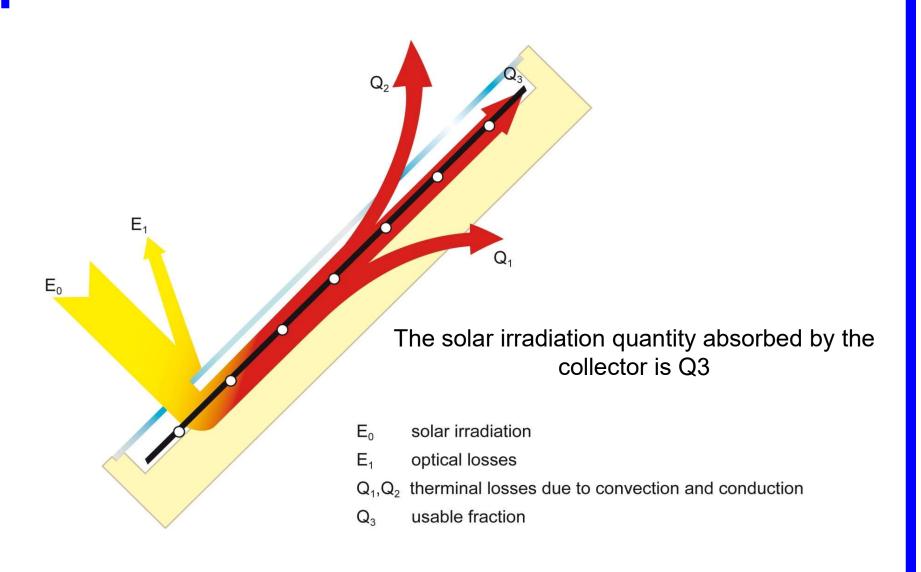
Solar radiation & orientation Irradiation depending on orientation



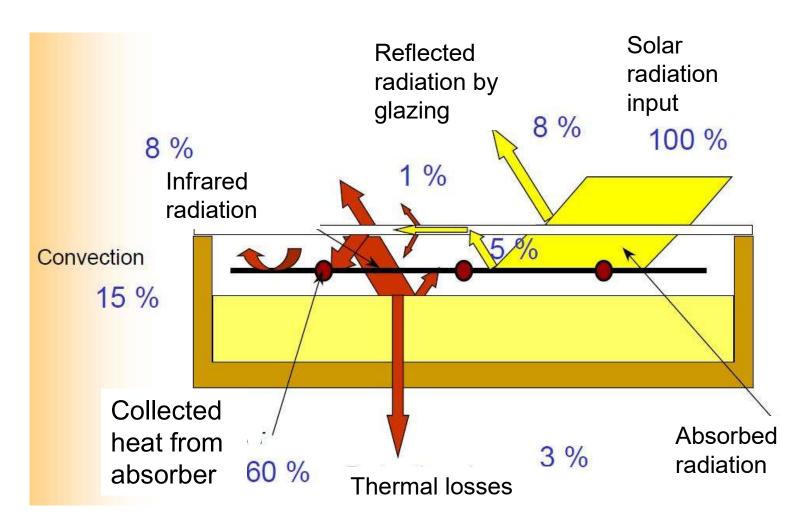

South orientation offers a better solar irradiation distribution throughout the day

Solar radiation & orientation Optimum of azimuth and collector tilt angle

- ☐ In the Northern Hemisphere, the optimal orientation is facing south:
 - **Azimut 0°**
- ☐ Optimal collector tilt angle = latitude angle
- ☐ Optimal collector tilt angle depends on the time of the year during which hot water is needed
- ☐ Example : Cairo case
- ✓ Latitude : 30° Optimal collector tilt angle : 30°
- ✓ Azimuth: 0°

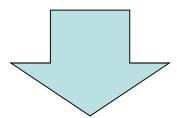


Solar radiation & orientation Optimum of azimuth and collector tilt angle along the year



30 ° inclination and south orientation offer maximum correction factor(100%)

Solar radiation & orientation How to get solar energy?


Solar radiation & orientation Heat losses

The total thermal losses for a collector are about 40 %

Conclusion

- The solar radiation received on earth is affected by the earth's movements and atmospheric conditions.
- The irradiation depends on orientation and inclination
- The optimal orientation is facing south (azimuth 0°)
- The optimal collector tilt angle is the latitude of the location

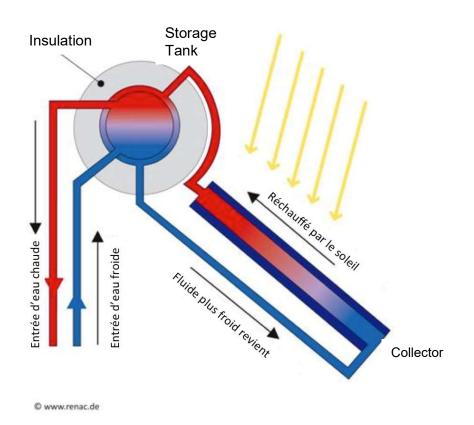
- Need to identify the best orientation before SWH installation
- Need to identify the inclination of the collector according to the country

SWH: Definitions and technologies

Training of SWH installer & maintainer

Solar Water Heaters Definition and technologies

Objective:


- ✓ Be informed on SWH components
- ✓ Have knowledge on main SWH typologies
- ✓ Have detailed definition of SWH types
- ✓ How SWH is designed?

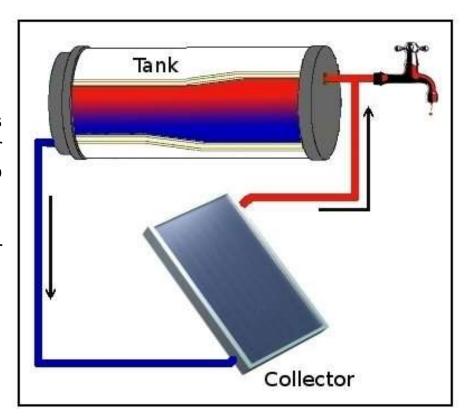
Duration

- ✓ 1:15 hour
- ✓ From: 11:15 to 12:30
- ✓ Close phones
- ✓ Don't speak to each other

SWH TECHNOLGY SWH Components

- Collector
- Tank
- Accessories
- Connecting pipework

SWH TECHNOLGY SWH system types


Thermosiphon direct system (open loop system)

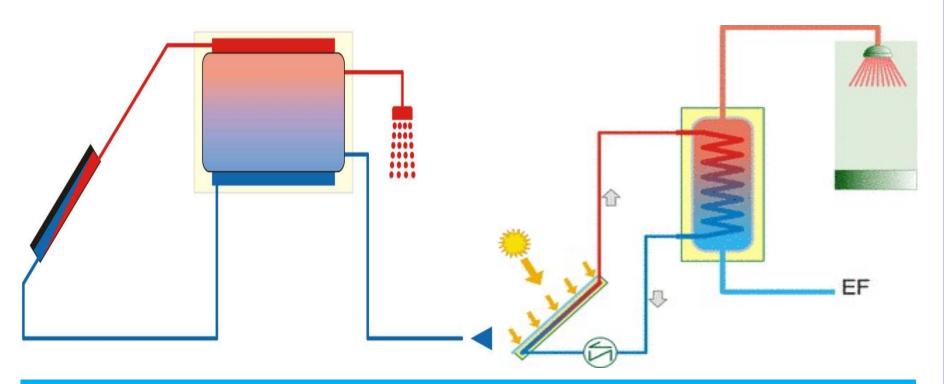
Thermosiphon indirect system (close loop system)

Forced circulation system

SWH TECHNOLGY SWH Typology : Thermosiphon principle

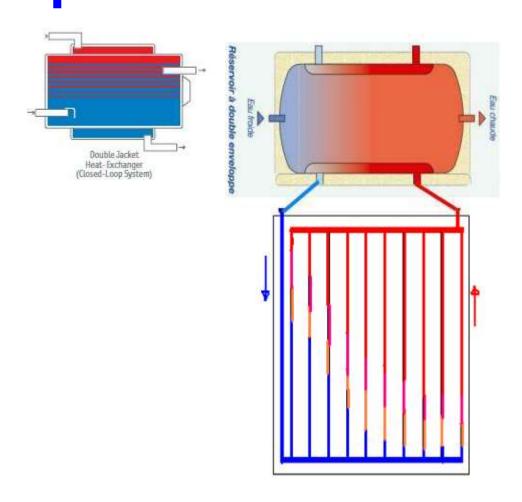
- The heated water rises up into the storage tank by natural Thermosiphon action
- Water which is heated in the collectors expands becoming lighter allowing colder heavier water to fall by gravitational force to the bottom of the collector
- The cold water pushes the hotter lighter water back up into the storage tank.

Thermosiphon action occurs without any moving parts or auxiliary electrical energy input to the system


SWH TECHNOLGYThermosiphon Direct system(open loop system)

The same water is heated and used, but water quality should be useful

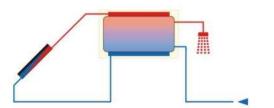
SWH TECHNOLGY


Thermosiphon Indirect system(close loop system)


Primary water gives the heat to the secondary water, through a heat exchanger

Used when the water quality is bad and water is not useful

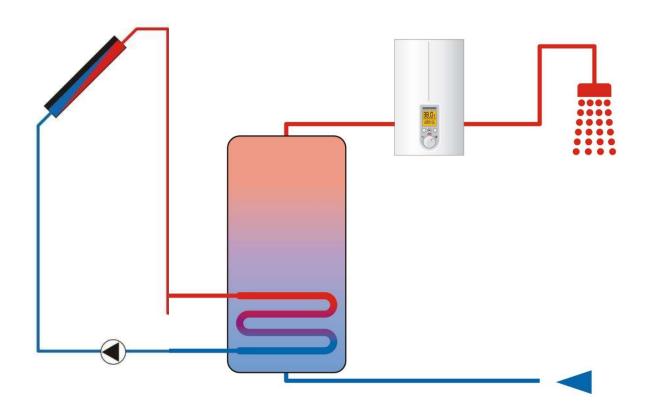
SWH TECHNOLGYThermosiphon Indirect technology


Tubular exchanger

SWH TECHNOLGYThermosiphon system comparison

Open Loop system

Close Loop system


- No need heat exchanger
- Simple
- Low temperature losses
- No need expansion tank

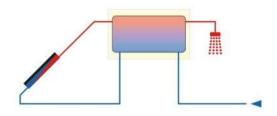
- Reduction of the limestone in tube
- Hygienic
- No corrosion

- Corrosion
- Limestone in collector
- Hygienic problem in water

- Need a heat exchanger
- Need an antifreeze
- More expensive
- High temperature losses

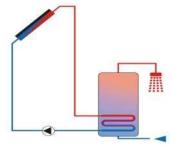
SWH TECHNOLGY Forced circulation system

- The primary water is heated and gives its energy to the secondary water
- The tank is separated to the collector
- the pump Allows the circulation of the heat transfer fluid between the collector and the tank


ADVANTAGES

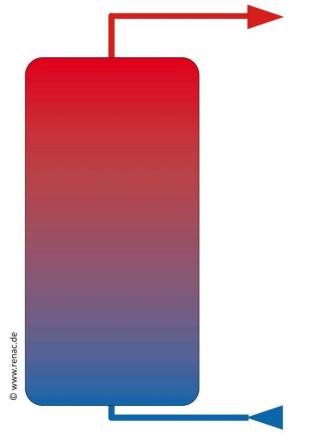
DISADVANTAGE

SWH TECHNOLGY


Comparison between Thermosiphon and Forced circulation

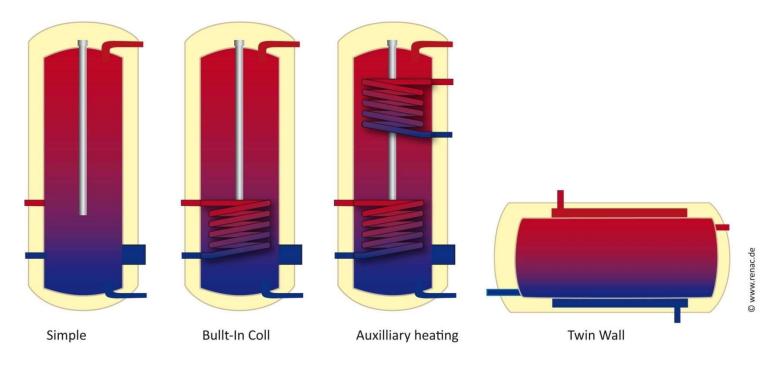
Thermosiphon

- No water pump
- No regulation system
- No electricity supply
- Simple and independent
- Storage above the collector
- Storage outside
- For small capacities
- Bad system optimization


Forced circulation

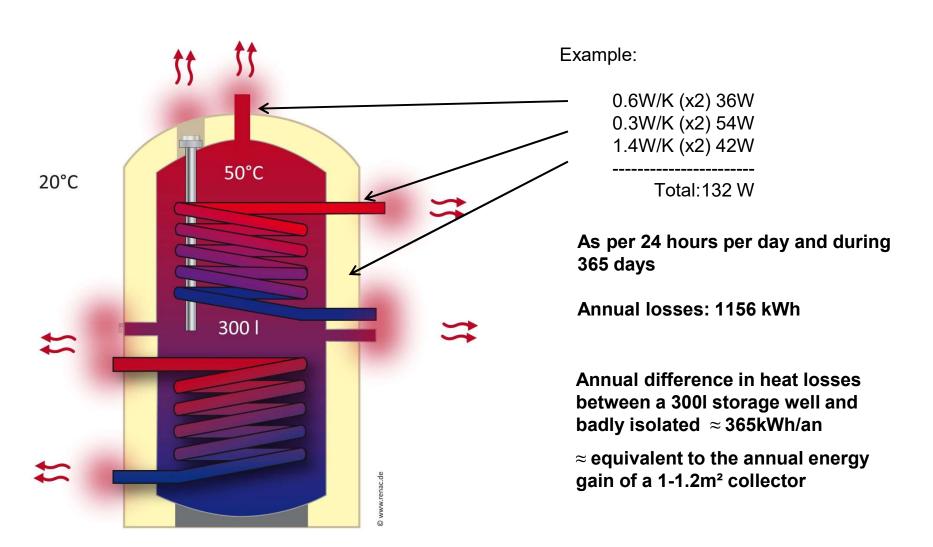
- Independent location
- Ability to separate tank- collector
- Large scale system possible
- Storage tank protected inside
- Need a pump
- Need a regulation system
- Need a supply electricity
- System interrupted during an electricity shut off

SWH TECHNOLGY SWH Tank : Technologies & Capacities

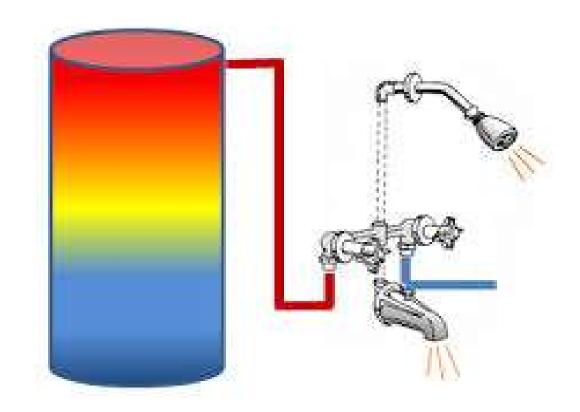

Ideal storage conditions

- Small storage volume (high specific heating capacity)
- Low heat loss (low volume/area ratio, good insulation)
- Good thermal stratification (means having a vertical tank)
- Design for a 25 year lifespan
- Ability to support the required temperatures and pressures
- Environmentally friendly tank material and heat transfer fluid..

SWH TECHNOLGY SWH Tank: Technologies & Capacities


Tank design

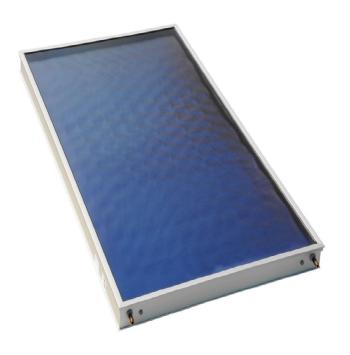
- Capacity: 80 L 3000 L
- · Orientation: vertical or horizontal
- · With or without heat exchanger?
- Material: Mild steel; stainless steel; enameled steel
- · With or without air vent


SWH TECHNOLGY SWH Tank: Technologies & Capacities

The importance of a good insulation

SWH TECHNOLGY SWH Tank : Technologies & Capacities

Thermal stratification in a Tank


Hot water is located at top tank / Cold water at bottom tank

SWH TECHNOLGY SWH Tank : Technologies & Capacities

Main parameters for selecting a tank

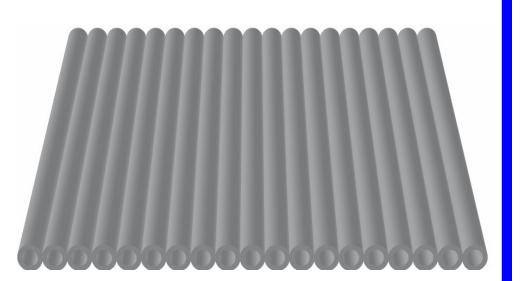
System temperature?
Water contains minerals and chlorine?
Internal or external heat exchanger?
Auxiliary heating?
For which application? Small or large scale?
Availability?
Cost? Guarantee,

Collector: Technologies

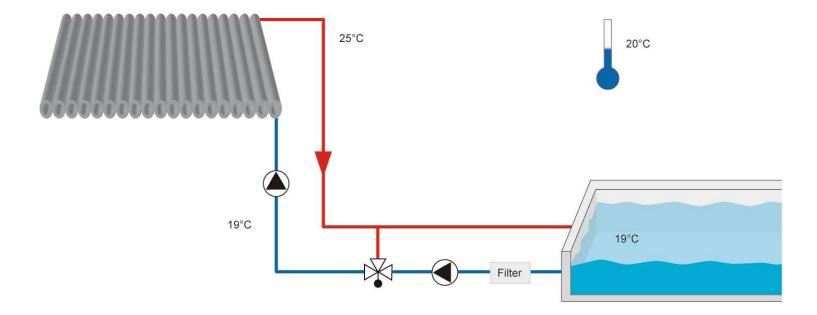
Unglazed solar collector

Flate plate collector

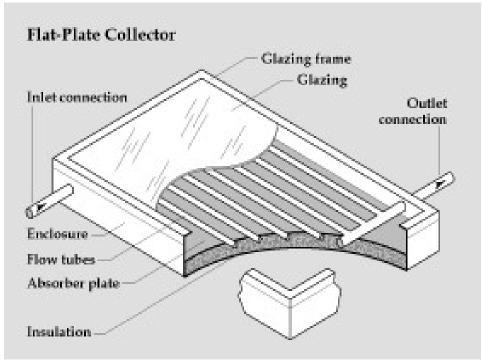
Collector: Technologies


Evacuated tube

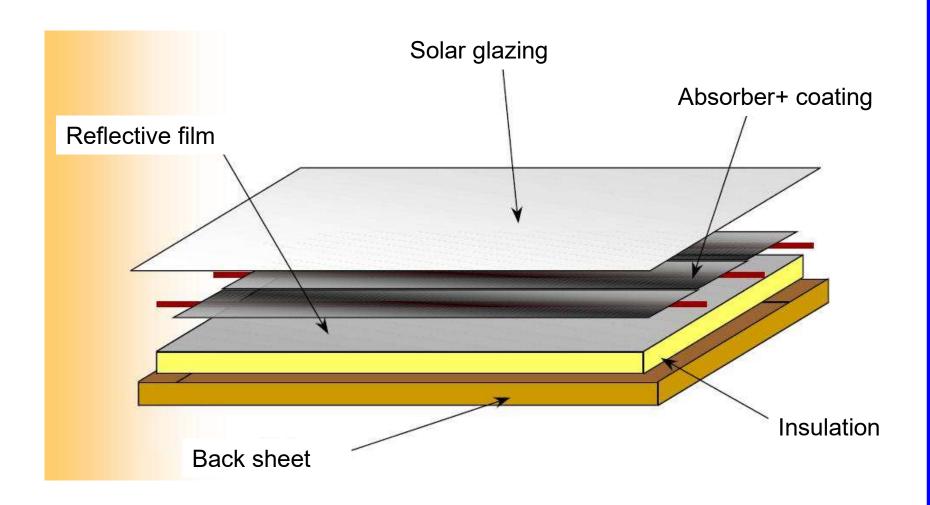
Concentrated solar collector


Unglazed solar collector

- No cover
- No insulation
- Application at low temperatures
- Pool heating
- Highly effective
- Material: rubber (EPDM) plastics (PP, PE)
- Simple
- Cheap
- Long life expectancy


Collector: Technologies

Solar Carpet application



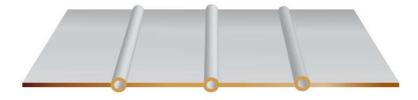
Flat plate collector

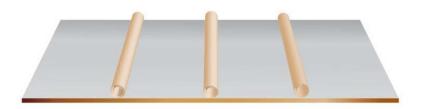
Flat-plate collectors are the most widely used kind of collectors in the world for domestic water-heating systems and solar space heating/cooling. The first accurate model of flat plate solar collectors was developed by Hottel and Whillier in the 1950's.

Flat plate collector components

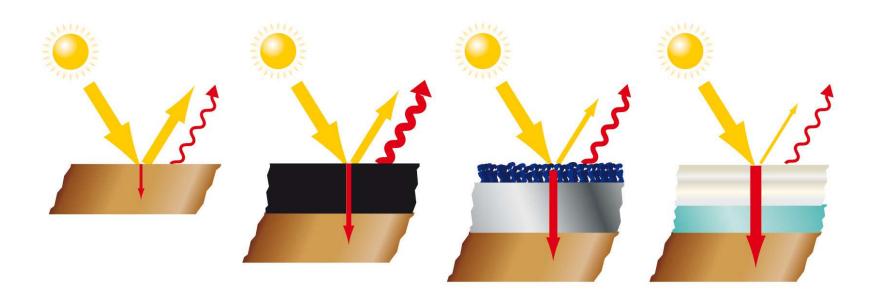
Flat plate collector components

The absorber: is usually a sheet of high-thermal- conductivity metal such as copper or aluminum, with tubes either integral or attached. Its surface is coated to maximize radiant energy absorption and to minimize radiant emission.


The insulation: reduces heat loss from the back or the sides of the collector.


The cover sheets, called glazing: allow sunlight to pass through the absorber but also insulate the space above the absorber to prevent cool air to flow into this space.

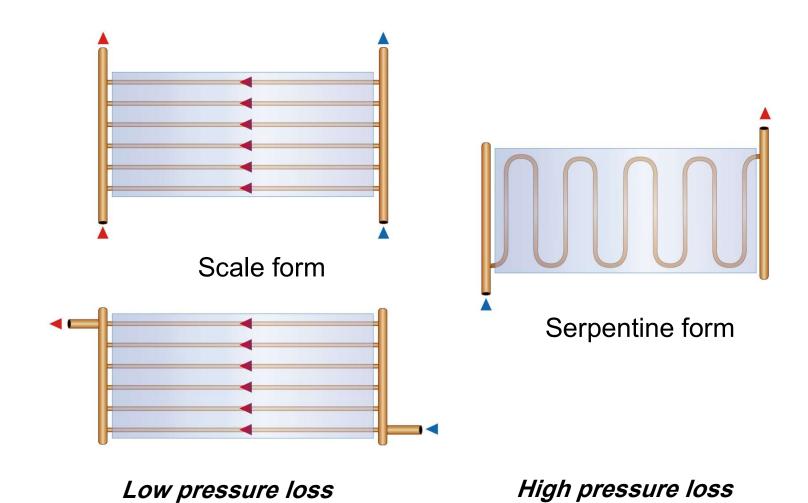
Absorber types


- Copper absorber
- Aluminum absorber with copper plate
- Copper pipe between two copper plates
- Copper pipe welded to a sheet of copper or aluminum

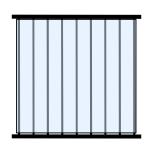
Main characteristics of absorber coating

- ☐ High absorption + low emissions coefficient
- ☐ Non-corrosive, stable in the long term
- ☐ Simple coating process
- ☐ Optimization of use and material costs

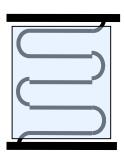
Type:	Absorption	Emission	
Black paint	app. 90%	арр. 20%	
Black chrome	95% - 96%	5% - 16%	
• Tinox	92% - 95%	2% - 4%	


Absorption and emission coefficient of materials

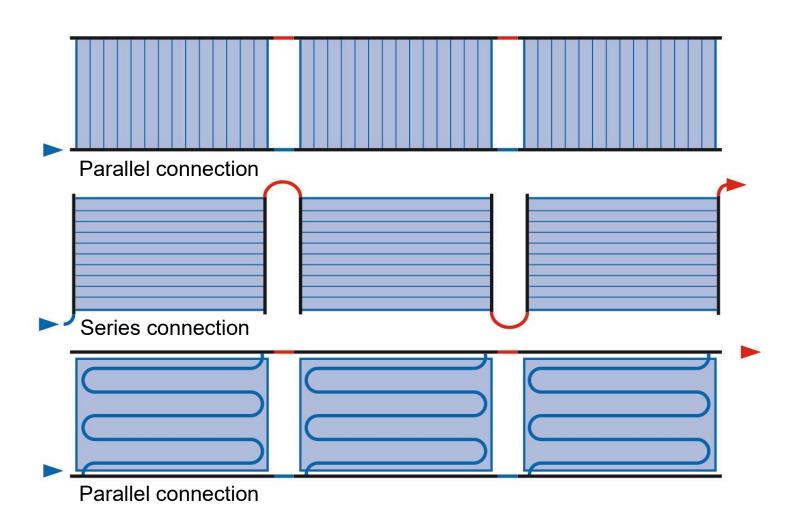
copper shet	black paint	black paint	TINOX
Type:		Absorption	Emission
Black paint		арр. 90%	арр. 20%
Black chroi	me	95% - 96%	5% - 16%
• Tinox		92% - 95%	2% - 4%


Collector: Technologies

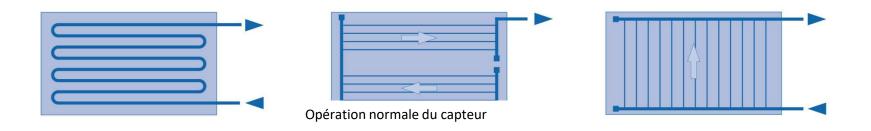
Absorber grid form


Absorber grid form

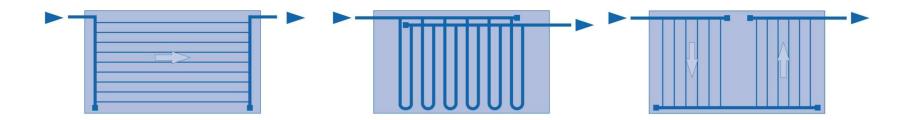
Scale form:


- Few pressure loss
- Allows serial connections
- Low flow systems
- "Thermosiphon" system

Serpentin form

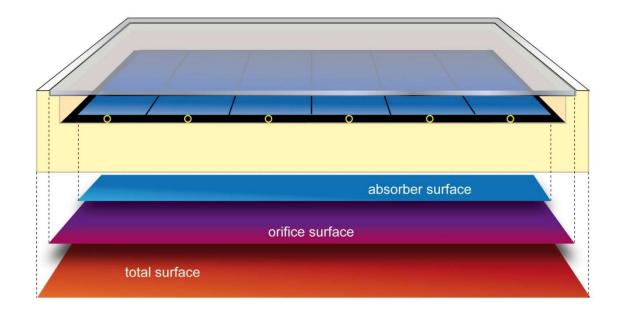

- Significant pressure losses
- Allows parallel connections
- High flux system
- Forced circulation system

Absorber type connection



Stagnation behavior

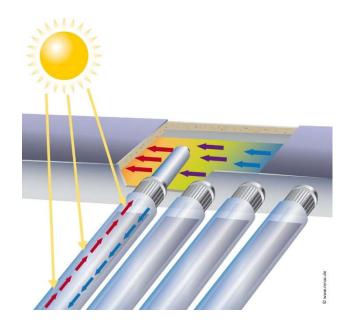
• Steam easily leaves the collector, ensuring low pressure



 Steam leaves the collector with difficulty, which has the effect of trapping liquid under high pressure

Collector: Technologies

Different surfaces dimension

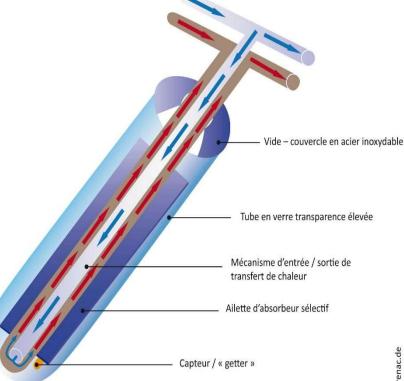


Total surface = orifice surface (aperture) + absorber surface

Collector: Technologies

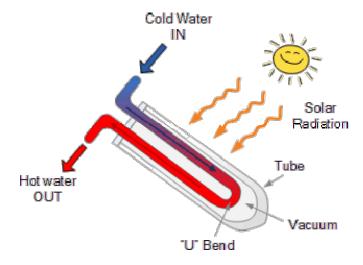
Evacuated Tube

Evacuated (or Vacuum) Tubes are solar panel built to reduce convective and heat conduction loss (vacuum is a heat insulator).

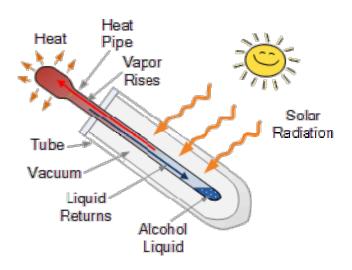


Collector: Technologies

Evacuated Tube


The sun's radiation is absorbed by the selective coating on the inner glass surface, but is prevented from re-radiating out by the silver-coated innermost lining which has been optimized for infrared radiation. This acts similarly as an one-way mirror.

This is very efficient. 93% of the sun light's energy hitting the tube's surface, is absorbed, whereas only 7% is lost through reflection and re-emission. The presence of the vacuum wall prevents any losses by conduction or convection - just like a thermos flask. Because of this, the system will work even in very low temperatures, unlike traditional flat plate


Evacuated Tube types: Direct flow

Direct flow evacuated tube collectors also known as "U" pipe collectors, are different from the previous ones in that they have two heat pipes running through the center of the tube. One pipe acts as the flow pipe while the other acts as the return pipe. Both pipes are connected together at the bottom of the tube with a "U-bend", hence the name. The heat absorbing reflective plate acts like a dividing strip which separates the flow and the return pipes through the solar collector tubes. The absorber plate and the heat transfer tube are also vacuum sealed inside a glass tube providing exceptional insulation properties.

Evacuated Tube types: Heat pipe tube

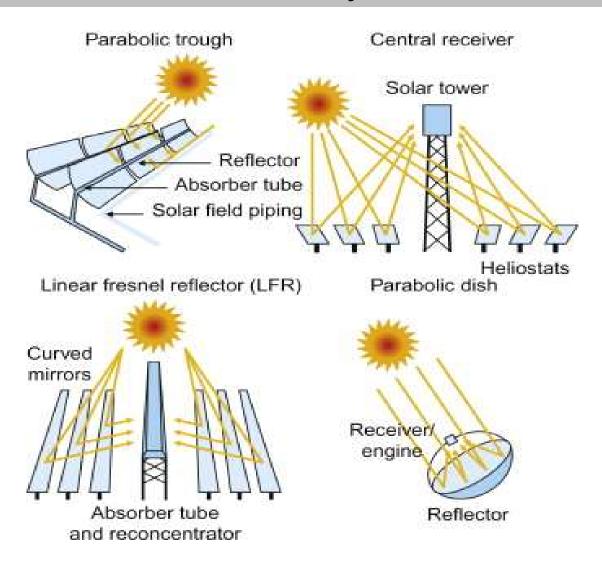
In heat pipe evacuated tube collectors, a sealed heat pipe, usually made of copper to increase the collectors efficiency in cold temperatures, is attached to a heat absorbing reflector plate within the vacuum sealed tube. The hollow copper heat pipe within the tube is evacuated of air but contains a small quantity of a low pressure alcohol/water liquid plus some additional additives to prevent corrosion or oxidation.

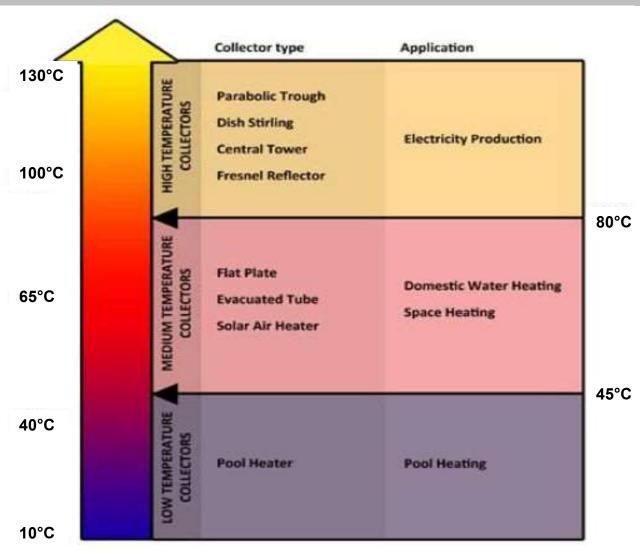
Collector: Technologies

Differences between Flat plate and Evacuated collector

	Flat Plate Collector	Evacuated Tube collector
Cost	Less expensive	around 20% to 40% more expensive
Performance	Better in southern climate	Better in colder and/or cloudier conditions
Efficiency	Less efficient	20% more efficient than flat plate
Installation	More sensitive to sun radiation	Less sensitive to sun radiation and orientation
Heat losses	Convection and Convecting losses is high	Convection and Convicting losses is low
Temperature range	From 60 to 90 °C	From 60 to 120 °c

Concentrated solar collector


- □ Concentrated Solar collector use radiation concentration when fluid temperature more than 100°C
- ☐ Radiation concentration can be static or dynamic
- ☐ This collector use stationary radiation concentration; It's usually used to heat liquid (water or water with anti freeze or diathermic fluid). It can be use for electricity generation and can be used in Solar cooling

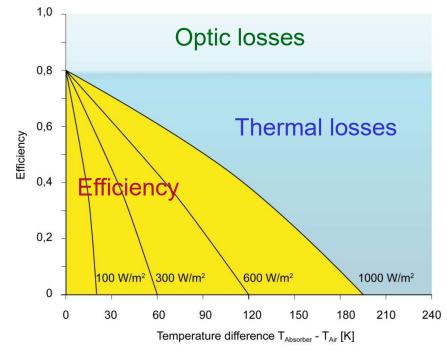

Collector: Technologies

Concentrated solar collector: different systems

Collector: Technologies

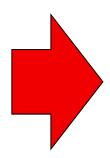
Classification collectors application

SWH TECHNOLGY Collector : Efficiency


The collector efficiency depends on :

- Solar radiation
- Optic losses
- Thermal losses
- Temperature difference : T_c- T_a

Where:


Tc : Collector average temperature

Ta: Ambiant temperature

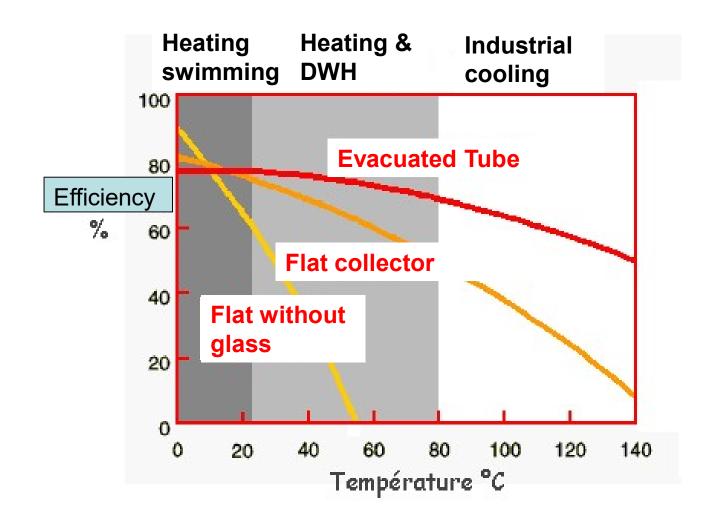
Collector: Efficiency

$$\eta = \eta_0 - a_1 \frac{(\vartheta_m - \vartheta_a)}{G} - a_2 \frac{(\vartheta_m - \vartheta_a)^2}{G}$$

 η_0 = efficiency zero losses (optic losses) [K]

a₁ = Linear coefficient of heat transfer [W/m²K]

a₂ = Quadratic coefficient of heat transfer [W/m²K²]

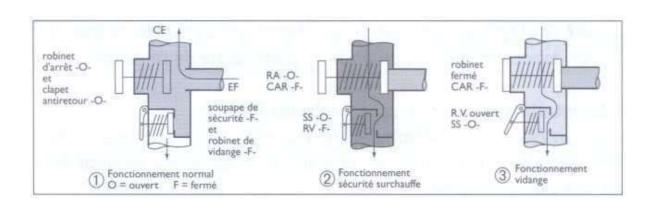

 θ_{m} = Collector average temperature [K]

 θ_a = ambient temperature [K]

G = irradiation [W/m²]

Collector: Efficiency

Application field



Safety group

Role: Protect the individual SWH against overpressure

Function:

- Safety valve: evacuation of water in case of overheating,
- Check valve
- Manual water heater drain valve
- Shutoff valve

Magnesium Anode

Function: Barrier corrosion = To protect the tank against corrosion

Electrical heater (Backup system)

Function: is an electrical resistor used as a heating supplement in case of insufficient sunshine or if the needs are higher than expected (backup system)

Expansion Tank

Function:

- An expansion tank is another small tank that is attached to the water supply pipe of the SWH. The expansion tank is designed to handle the thermal expansion of water as it heats up in the SWH, preventing excessive water pressure (Overpressure).
- It is used in indirect and forced circulation system

Coolant (antifreeze)

Function:

- It's a mixture of water and glycol
- To ameliorate the heat transfer
- To prevent fluid degradation by high temperatures
- To reduce the lime scale in the circuit
- 40 % glycol mixture provides frost protection down to -20 °C Source: Resol
- It is used only for indirect and forced circulation systems

Connecting pipework

Characteristics:

- To resist at high temperature and the corresponding pressures
- The common material used is copper
- The use of galvanized steel is to be avoided
- Plastic or multilayer tubes are prohibited for temperature higher than 70 °C
- Insulation is fundamental to conserving heat energy
- The insulation of the external pipes have to resist to UV light

Recommendation diameter sizes:

	Tank type & capacity	Cupper piping
	180 - 200 L	12/14
Indicative proposed	300 L	14/16
diameters	400 L	16/18
	500 L et	18/20 ou
	plus	20/22

Insulation pipe

Motorial	Minimum Thickness e _{min}			
Material	[mm]		["]	
D : diameter	d<22	d>22	d< 7/8	d> 7/8
Polyurethane	15	20	5/8	3/4
Mineral wool	20	30	3/4	1 1/4

Mineral wool

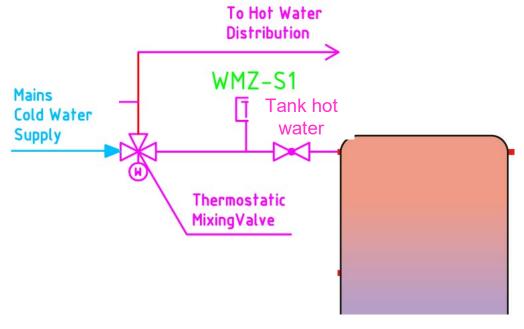
Insulation thickness = Pipe diameter

SWH TECHNOLGY Accessories

Support structure

Requirements:

- Respond to the solidity needs necessary for weight and system stability
- Resist mainly climate efforts due to winds
- Resist corrosion (Galvanized iron or aluminum)
- The fixation accessories (nut, screw, washers.....) have to be protected against corrosion (galvanized, stainless steel)


SWH TECHNOLGY Accessories

Thermostatic Mixer (or Mixing valve)

- To prevent burns
- Located on the hot water outlet cylinder
- Cold water is mixed with hot water to obtain the programed temperature

SWH: Technical drawings

Training of SWH installer & maintainer

Solar Water Heaters Technical drawings

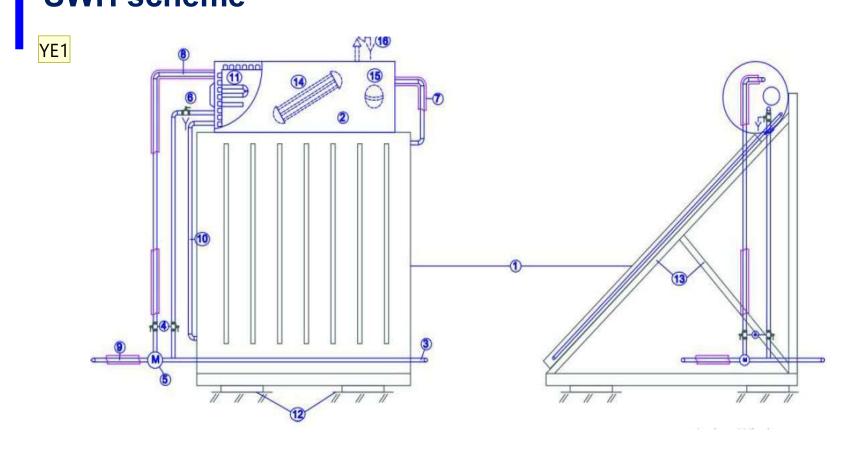
Objective:

- ✓ Be informed on SWH components symbols
- ✓ Have knowledge on main system schemes
- ✓ Have detailed parameters on components association
- ✓ How to prepare site SWH drawing?

Duration

- ✓ 1:30 hour
- ✓ From: 13:30 to 15:00
- ✓ Close phones
- ✓ Don't speak to each other

TECHNICAL DRAWINGSHydraulic symbol


Temperature sensor Temperature gauge Pressure gauge Shut off valve Purge valve Degasser with valve Control valve Pump Tamper-proof valve Flow gauge Flow meter Safety or pressure valve **Expansion tank**

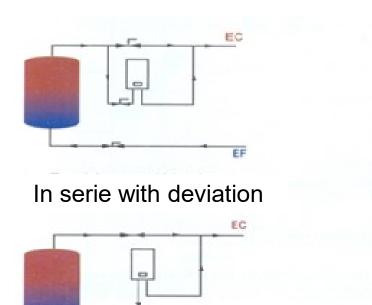
Isolating valve
One way valve

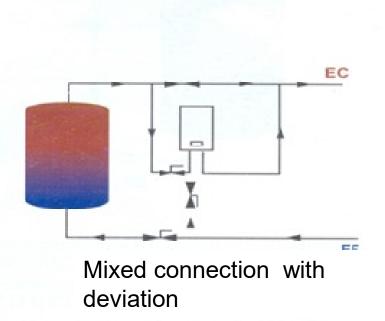
Heat exchanger

Thermostatic valve

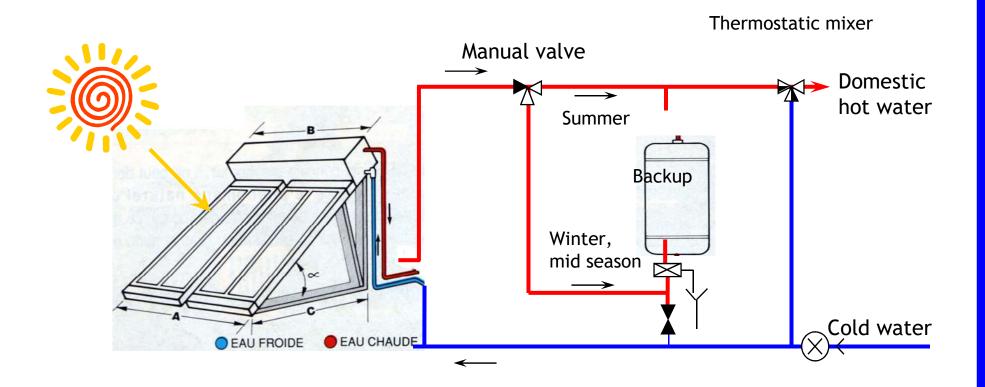
TECHNICAL DRAWINGS SWH scheme

- 1) Solar Collector
- 2) Storage tank
- 3) Cold water inlet
- 4) Isolation valve
- 5) Thermostatic mixer
- 6) Safety group
- 7) Hot water collector outlet (insulated)
- 8) Solar hot water tank inlet (insulated)
- 9) Solar hot water mixed inlet (insulated)
- 10) Cold water collector inlet

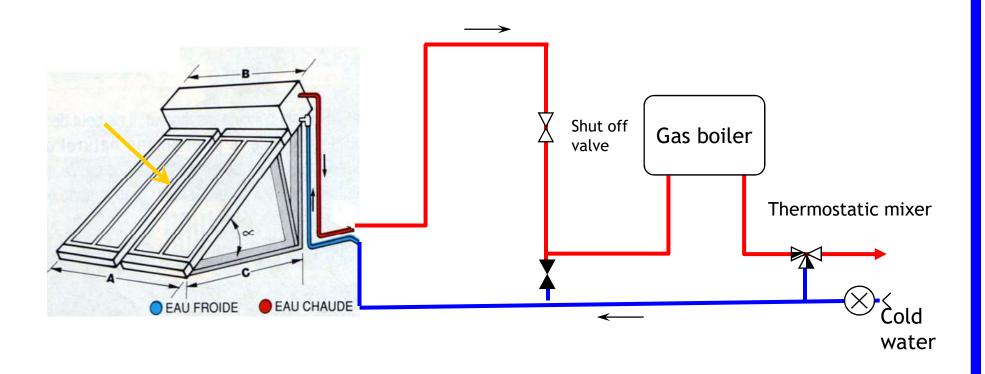

- 11) Electric back up
- 12) Concrete slabs
- 13) Support structure
- 14) Heat exchanger(for Indirect and forced system)
- 15) Expansion tank (for Indirect and forced system)


16) Safety valve (for indirect and forced system)

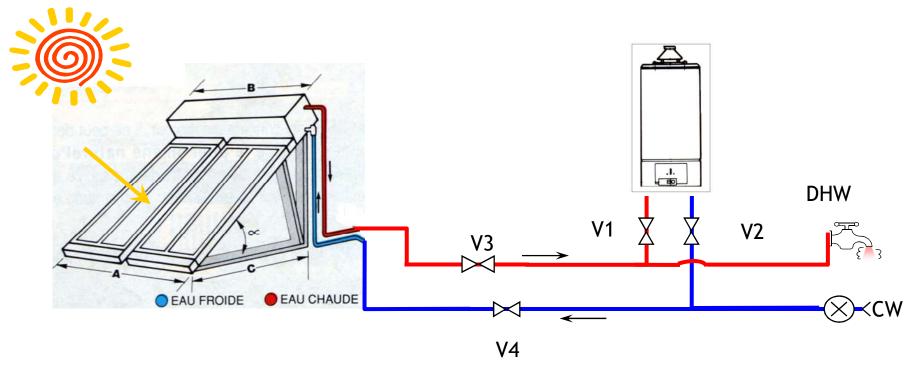
need high rsolution picture Yahia El-Masry, 03-Aug-20


YE1

Coupling backup at the SWH



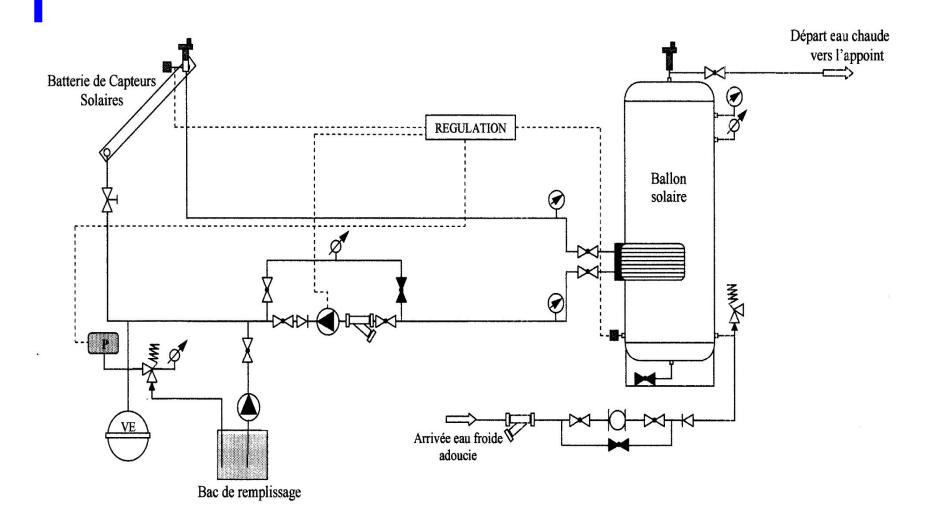
TECHNICAL DRAWINGSCoupling backup at the SWH


Two hydraulic circuits : one for summer needs and the other for winter and mid season needs

TECHNICAL DRAWINGSCoupling backup at the SWH

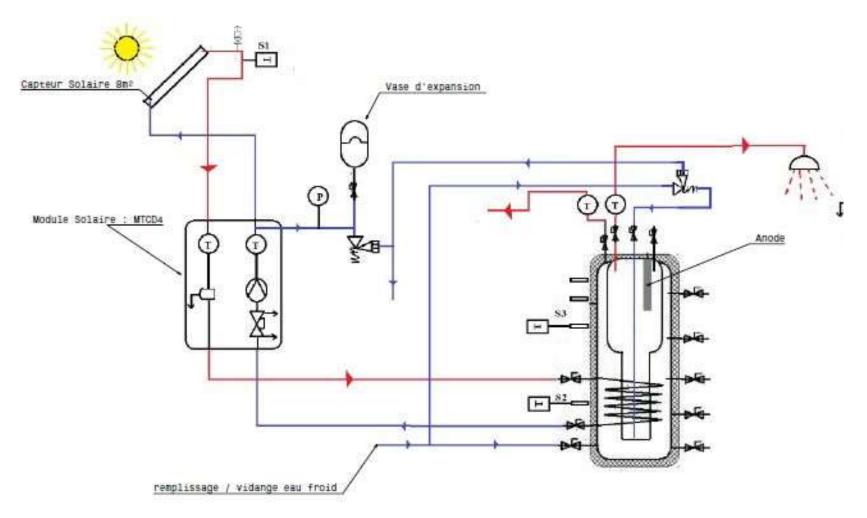
Back up system : Gas boiler

TECHNICAL DRAWINGSCoupling backup at the SWH

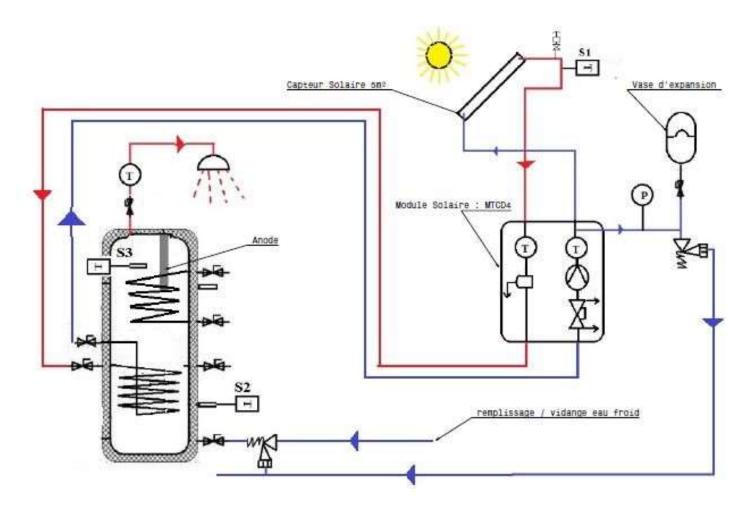


Operation	Closed	Open
Winter	V3, V4	V1, V2
Summer	V1, V2	V3, V4

DHW: Domestic hot water


CW : Cold water V1,2,3,4 : Valve

Hydraulic scheme of a forced circulation system


Example 1: Domestic hot water application

Hydraulic scheme of a forced circulation system

Example 2 : Domestic hot water + heating application

Hydraulic scheme of a forced circulation system

Example 3: with two internal heat exchanger

(one for the solar primary circuit and the other for Gas boiler backup)

TECHNICAL DRAWINGS Pipe specification

Characteristics:

- To resist at high temperature and the corresponding pressures
- The common material used is copper
- The use of galvanized steel is to be avoided
- Plastic or multilayer tubes are prohibited for temperature higher than 70 °C
- Insulation is fundamental to conserving heat energy
- The insulation of the external pipes have to resist to UV light

Recommendation diameter sizes:

	Tank type & capacity	Cupper	
	180 - 200 L	12/14	
Indicative proposed	300 L	14/16	
diameters	400 L	16/18	
	500 L et	18/20 ou	
	plus	20/22	

Pipe types

Mild steel

Copper

Stainless steel

Multilayer (cold side)

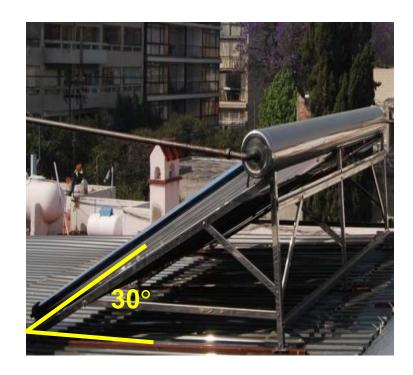
SWH: Site survey

Training of SWH installer & maintainer

Solar Water Heaters Site survey

Objective:

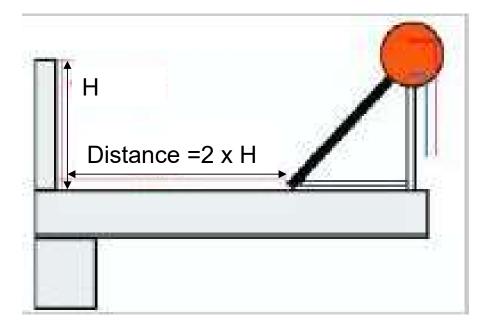
- ✓ Be informed on SWH components installation
- ✓ Have knowledge on main preparatory activities
- ✓ Have detailed parameters on installation
- ✓ How to prepare SWH installation in site?


Duration

- ✓ 0:30 hour
- ✓ From: 15:00 to 15:30
- ✓ Close phones
- ✓ Don't speak to each other

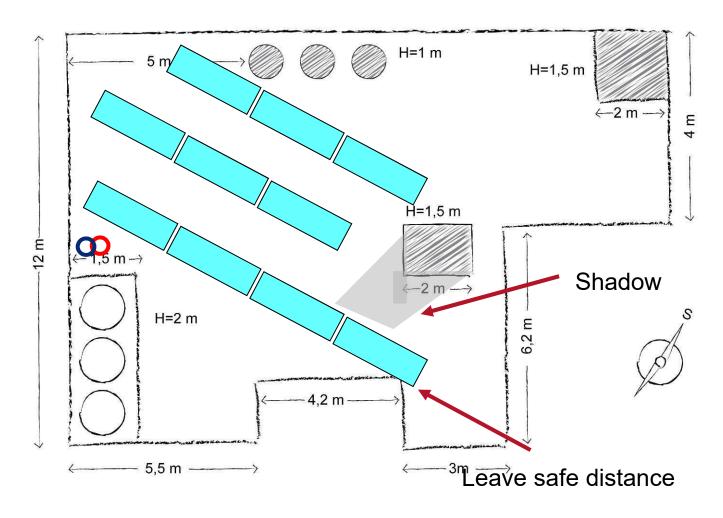
Parameters optimizing the location

Orientation and angle tilt


- ☐ In the Northern Hemisphere, the optimal orientation is facing south: Azimut 0°
- ☐ Optimal angle tilt = Location latitude = 30° (for Egypt case)

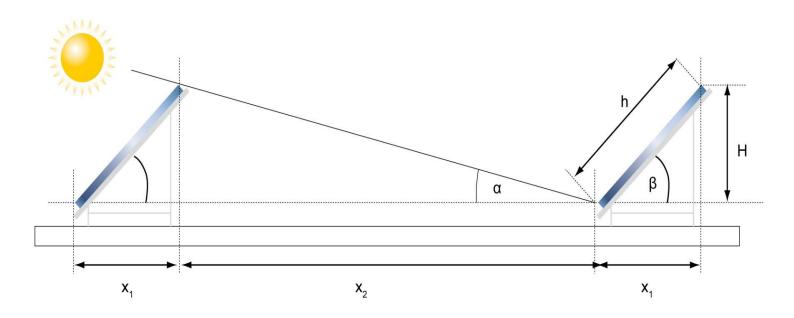
Parameters optimizing the location

Shading



Minimum distance to avoid shading: 2xH

Parameters optimizing the location


Shading

Leave safe distance for maintenance needs and circulation

Parameters optimizing the location

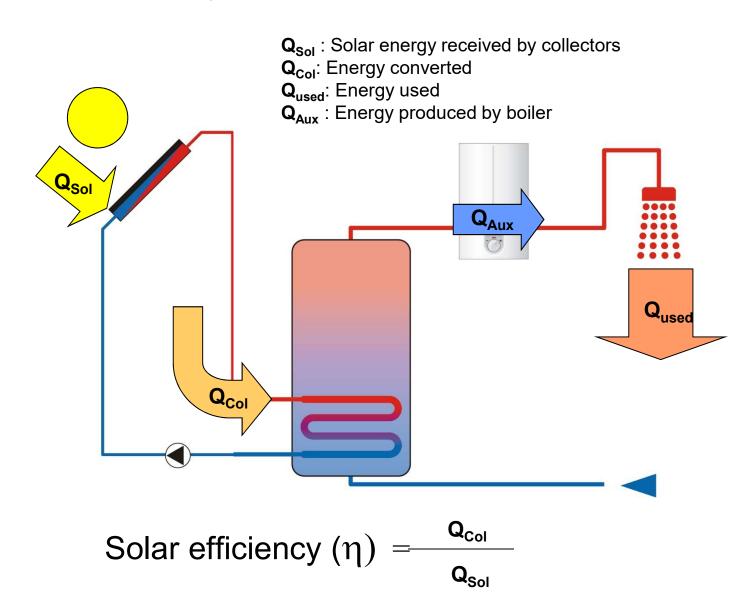
Collectors Auto Shading

Height
$$H = h \cdot \sin \beta$$

Length $x_1 = h \cdot \cos \beta$
 $\tan \alpha = H/x_2 \rightarrow x_2 = H/\tan \alpha$

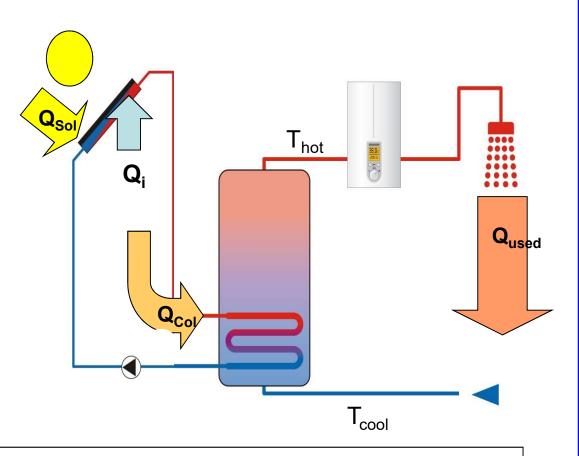
Minimum distance between collectors row for avoiding collectors shading is X₂

Parameters optimizing the performance


Existing parameters

- ☐ Close to a water evacuation point
- ☐ Take into account existing sanitary water heating equipment (wall-mounted boiler, electric water heater, etc.) and the distribution scheme
- ☐ Check the energy or fuel used (natural gas, LPG,

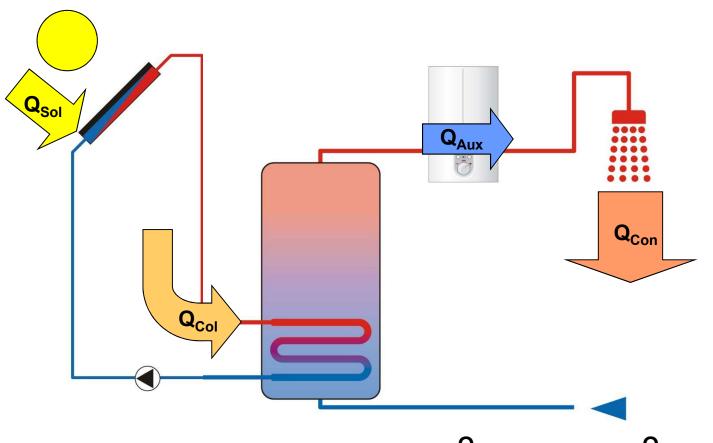
electricity, ...)


- ☐ Take into account existing piping
- ☐ Check the customer needs

Solar efficiency

System efficiency

Qi : Energy produced by collectors



System efficiency = collector efficiency. Storage efficiency. Workpipe thermal effciency

$$\eta_{\text{syst}} = \eta_{\text{col}} \cdot \eta_{\text{storage}} \cdot \eta_{\text{pipe}}$$

Solar fraction

CS (solar fraction between 60-90%)

Solar Fraction :
$$CS = \frac{Q_{col}}{Q_{col} + Q_{Aux}} = \frac{Q_{col}}{Q_{con}}$$

SWH: Installation techniques

Training of SWH installer & maintainer

Solar Water Heaters Installation techniques

Objective:

- ✓ Be informed on SWH components installation techniques
- ✓ Have knowledge on main preparatory tasks
- ✓ Have detailed parameters on installation
- ✓ How to install SWH in site?

Duration

- ✓ 1:00 hour
- ✓ From: 15:30 to 16:30
- ✓ Close phones
- ✓ Don't speak to each other

Installation techniques Preliminary visit

☐ Agree on funding arrangements

☐ Comply with the SWH quality charter : - Recommend eligible equipment. - Provide advice and assistance to the client - Submit a detailed offer, the warranty conditions including a service and maintenance contract - Etc. ☐ Collect the necessary information (occupants, existing equipment,...) ☐ Submit an offer

Installation techniques SWH selection and sizing

The following table presents the values that can be used as a first estimation for individual SWH depending on occupants house number:

Occupants house number	1 or 2	3 or 4	5 or 6	7 and +
Tank volume without backup (liters)	100-150	150-250	250-350	350-500
Tank volume with backup (liters)	150-250	250-400	400-500	550-650
Collector area (m2)	2-2.5	2-6	3-8	4.5-10

Installation techniques SWH selection and sizing

The following table presents the required collector area depending on daily hot water demand:

Demand		Required Collector Area				
Daily hot water demand		Daily Energy	Flat plate collector type		Evacuated tube type	
(Litres)	(m³)	(kWh/day)	Actual (m²)	Available (m²)	No. of collectors (2m²)	(m²)
100	0.1	5.3	1.5	2	1	1
150	0.15	7.9	2	2	1	1.5
200	0.2	10.5	3	4	2	2
300	0.3	15.8	4	4	2	3
400	0.4	21.0	-6	6	3	4
500	0.5	26.3	7	8	4	5
600	0.6	31.5	8	8	4	6
700	0.7	36.8	10	10	5	7
800	8.0	42.0	11	12	6	8
1000	1	52.5	14	14	7.	10
1200	1.2	63.0	16	16	8	12

Installation techniques Safety and protection equipment

Safety shoes

Work glove

Pharmacy box

Installation techniques Installation equipment

Manual banding machine (For piping design)

Descaling pump (For scale removal inside pipe in maintenance process)

Gaz blow pipe (For welding pipes)

oxyflame" bottle and/or express-type blowtorches for LPG welding

Scale for installation and manipulation

Installation techniques Installation equipment

Cord diameter 25 mm and/or any appropriate lifting means (For handling and transport SWH components)

Drill a hit (for mounting structure support)

Large model puncher equipped with appropriate strands of different diameters for drilling walls 50 cm thick (For drilling walls if necessary)

Installation techniques

Tools and measuring equipment

Plumping tool box (for mounting and installation)

Digital thermometer (for water temperature measurement)

Compass (for fixing the good orientation)

Flowmeter (for water flow measurement)

Installation techniques Step 0 :Preliminary works and verification

- ☐ Ensure the presence of expectations in accordance with the preliminary visit recommendations
- ☐ Choose a SWH location far from obstacles and close to a water evacuation
- ☐ Fix the orientation using a compass (due south)

Installation techniques: Flat plate case Step 1: Support structure mounting (1)

Lateral triangular supports are assembled on the floor

Installation techniques : Flat plate case Step 1 :Support structure mounting (2)

Fixing Track collector on triangular support - Structure reinforcement by X back supports

Installation techniques: Flat plate case Step 2: Collector mounting (1)

Fixing and positioning collector on the frame

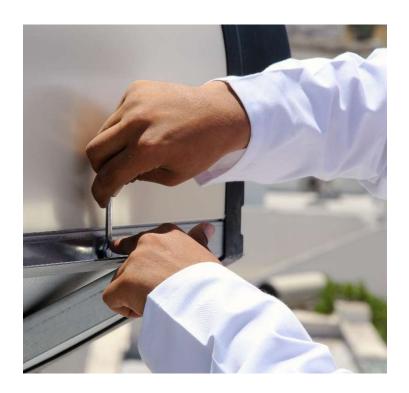
Fixing collector at frame bottom

Fixing collector at frame top

Installation techniques: Flat plate case Step 2: Collector mounting (2)

Drainage holes perforation to avoid effects harmful condensation in the collectors

Installation techniques : Flat plate case Step 3: Tank mounting (1)



Fixing the rear tank support

Fixing tank on the frame

Installation techniques: Flat plate case Step 3: Tank mounting (2)

Tank centered position

Tightening tank fixation

Installation techniques: Flat plate case Step 4: Concrete slabs fixation & overall stability check (1)

Tightening the X back fixation after tank mounting

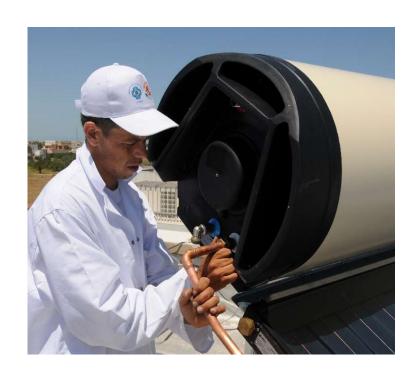
Installation techniques: Flat plate case Step 4: Concrete slabs fixation & overall stability check (2)

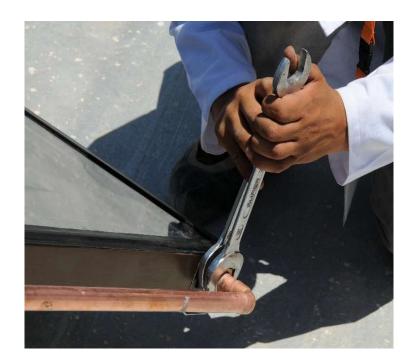
Concrete fixing slabs with horizontal alignment verification of entire assembly

N.B: Use mortar to fix the slabs on the floor and screws to fix the frame on the slabs

Installation techniques : Flat plate case Step 5: Hydraulic and electrical connections

Safety group connection





The valve have to be mounted in position vertical to avoid blockage by limestone

Installation techniques: Flat plate case Step 5: Hydraulic and electrical connections

Collector-Tank cold water piping connection

Connection and tightening

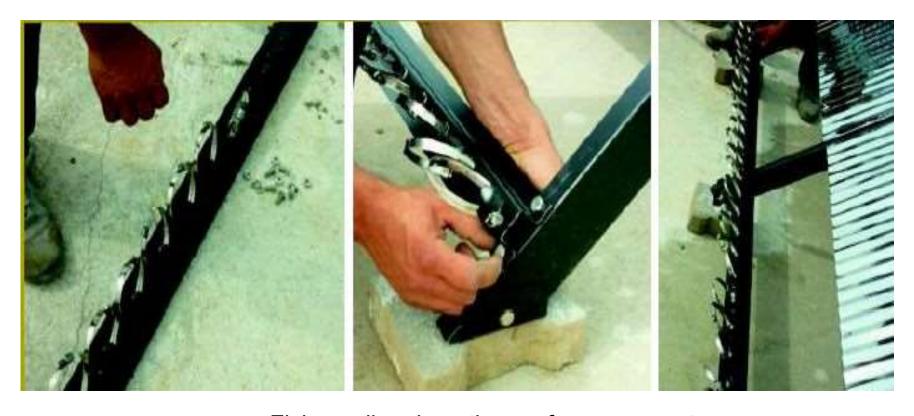
Installation techniques: Flat plate case Step 5: Hydraulic and electrical connections

Collector-Tank hot water piping connection

Connection and tightening

Installation techniques : Flat plate case Step 5: Hydraulic and electrical connections

Shaping, cutting and welding hydraulic connection


. The hot water piping have to be insulated

Installation techniques : Vacuum tubes case Step 2: Reflectors fixing

Fixing Reflectors on frame support

Installation techniques : Vacuum tubes case Step 3: collars insertion fixing

Fixing collars insertion on frame support

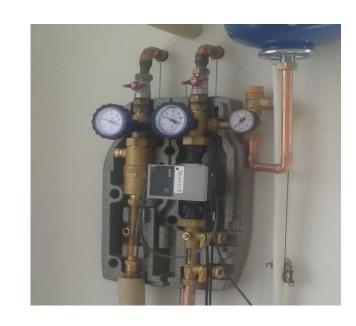
Installation techniques : Vacuum tubes case Step 4: Tank mounting

Fixing tank on the frame

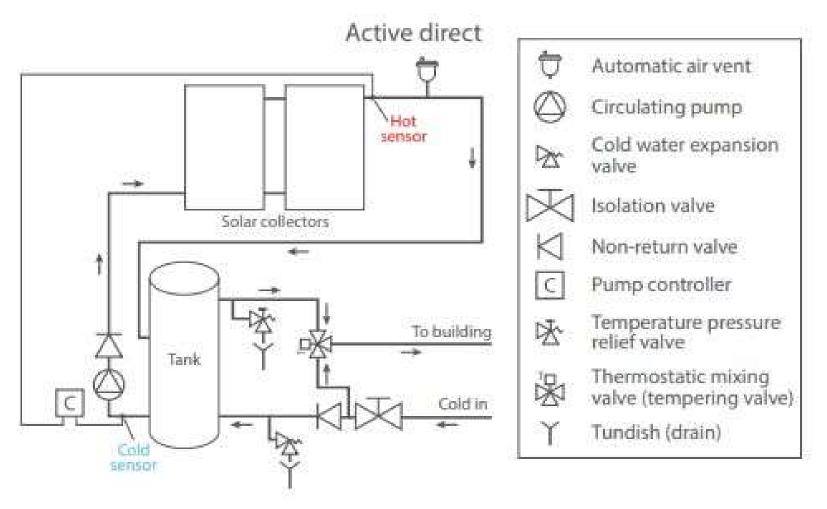
Installation techniques : Vacuum tubes case Step 4: Vacuum Tubes mounting

Fixing up vacuum tubes in manifold inside the tank

Fixing bottom tubes in aluminum slide


Installation techniques: Forced circulation case Step: Tank installation

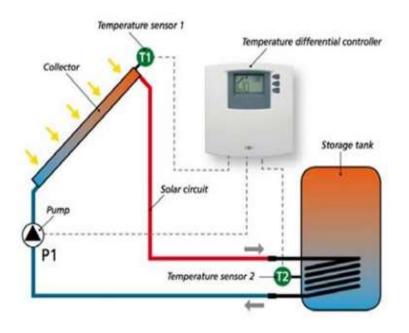
- ☐ The storage tank have to be installed in a technical local
- □ It would ideally be installed as close to the array collectors as practical in order to minimize heat loss in piping runs
- ☐ The distance between the tank and any wall should be minimum 50 cm
- □ It need minimum 60 cm between the ceiling and the top of the tank in order to conveniently replace the magnesium anode rod



Installation techniques: Forced circulation case Step: Pump station installation

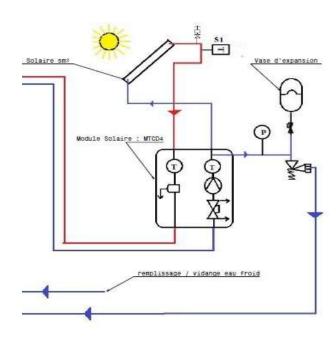
- ☐ The pump station incorporate pump, a differential controller, a flow meter, gauges and non-return valves in general
- ☐ It must be installed onto the wall and the pump wired to the cold line, which runs between the lower part of the tank to the lower inlet of the collector(s)
- ☐ Differential controller function : measure the temperature at the solar collector and the storage tank to determine whether pump operation is appropriate or not.

Installation techniques: Forced circulation case Step: Safety devices installation

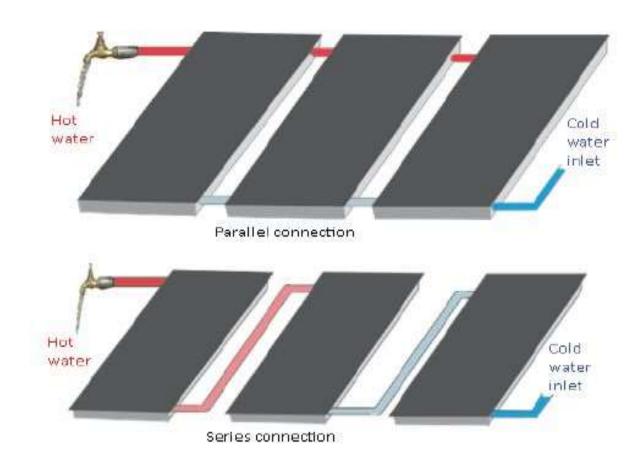

The valves should be installed in such a way that there is ample accessibility for maintenance and troubleshooting

Installation techniques: Forced circulation case Step: Safety devices installation

- □ The solar system must have isolation valves one on each side of the solar loop. An isolation valve should be provided between the pump and the tank on the feed line and between the non return valve and the tank on the return line.
- □ Drain valves should be provided on both sides of the collector loop. Drain valves should always be readily accessible.
- ☐ If a standard "mixing" valve is to be installed, be sure it is below the top of the tank
- ☐ Thermometer wells on both the inlet and outlet sides of the solar loop are desirable.


Installation techniques: Forced circulation case Step: Temperature sensors installation

- ☐ The tank sensor should be located on the storage tank as close as possible to the bottom
- ☐ The high-temperature sensor have to be placed on the outlet pipe of the solar collector
- □ All sensors must be mounted according to manufacturer's specifications
- □ Connections for sensors should be made with silicone-filled wire nuts or telephone style waterproof connections. They should be coated weather tight with sealant and protected from exposure to sunlight


Installation techniques: Forced circulation case Step: Expansion tank installation

- ☐ Mount the expansion tank in a convenient location close to the pump station
- ☐ connect the expansion tank connection line ends to the pump station
- ☐ Connect the expansion tank on the cold line

Installation techniques: Series or parallel collectors installation

The maximum number of collectors in series or parallel have to be recommended by the manufacturer

SWH:
Maintenance and repair
Thermosiphon systems

Training of SWH installer & maintainer

Solar Water Heaters Maintenance and repair

Objective:

- ✓ Be informed on SWH components maintenance
- ✓ Have knowledge on main SWH faults
- ✓ Have detailed tasks on M&R
- ✓ How to prepare maintenance of SWH in site?

Duration

- ✓ 0:30 hour
- ✓ From: 16:30 to 17:00
- ✓ Close phones
- ✓ Don't speak to each other

Maintenance & repair Preventive maintenance Check list

In the event of maintenance or repair, cut off the cold water supply and electricity before taking any action

Component inspection	Action(s)			
Flat plate Collector/ evacuated tube glazing and seals	Look for cracks in the collector/ evacuated tube glazing, an check to see if seals are in good condition (condensation case)			
Plumbing, pipework, and wiring	Look for fluid leaks at pipe connections. Check pipe			
connections	connections and seals. pipes should be sealed with a mastic compound. All wiring connections should be tight			
Piping and wiring insulation	Look for damage or degradation of insulation covering pipes			
	and wiring			
Roof penetration	Flashing and sealant around roof penetrations should be in			
	good condition.			
Support structures	Check all nuts and bolts attaching the collectors to any			
	support structures for tightness			
	Check the metal condition (anti corrosion paint if necessary)			
Safety valves (safety group, safety	Make sure the valve is not stuck open or closed			
valve)	Check the safety group by turning the purge button. (it is			
	normal for the valve to "drip", in case of high water			
	temperature)			

Maintenance & repair Preventive maintenance Check list

Component inspection	Action(s)
Antifreeze fluid	Check and / or change the antifreeze fluid in the closed
	circuit. The frequency of this operation is often reported in
	the supplier's manual
Storage tank	Regular drain and clean the Tank storage to prevent the
	risk of bacterial proliferation
	Check for cracks, leaks, rust, or other signs of corrosion
Magnesium anode	Check the anode state. When the anode reaches a level of
	wear, its diameter becomes very small, which causes leaks
	at the clamping nut. This problem is accelerated by the
	non earthing of the anode (quite frequent case)
Back up (electrical case)	Check any damage to the sleeves, electrical cables
	Check that the electrical connections and grounding are in
	good condition.
	Check the thermostat setting
	Check the condition of the electric resistance (scale
	deposit)

Clean dirty collector

Condensation holes under the glass

Purge button operation

Thermostat setting

Electrical resistance control and replacement

Limestone extraction

Magnesium anode control and replacement

Collector drain hole control

Maintenance & repair Curative maintenance

Clean, descale or replace if necessary:

- ☐ Piping connection
- □ Tank
- ☐ Joint
- ☐ Safety group
- ☐ Tube grid collector
- Magnesium anode
- ☐ Electrical resistance
- Thermostat
- ☐ Vacuum tubes (for vacuum case)
- ☐ Fill antifreeze fluid (for indirect system)
- ☐ Expansion vessel (for indirect system)

Maintenance & repair Troubleshooting: Thermosiphon case

Issue	l -	Thermosiphon Direct		hon Indirect	Cause (s)	Corrective Action (s)
	-	tem	System			
Collector type	Flat Plate	Evacuated	Flat plate	Evacuated		
		Tube		Tube		
	Х	Х	Χ	Х	Connections clogged	Clean/replace
Leakage at the					with limestone	connections
connections	Х	Х	X	X	Defective joint	Replace joint
	Х				Tube grid collector	Descale and clean
					clogged with	the tube grid
					limestone	collector
			X	X	Lack of antifreeze	Control the
Not hot water					fluid	level/add antifreeze
						fluid
			X	X	Leak at expansion	Replace expansion
					vessel	vessel and add
						antifreeze fluid
	Х	Х	Х	Х	Absence or bad state	Replace/Insulate hot
					of pipework	water canalization
					insulation	
		Х		X	Vacuum losses in	Replace defective
					vacuum tube	evacuated tubes
	Х	Х	Х	Х	Safety group blocked	Clean/replace safety
					at open position	valve

Maintenance & repair Troubleshooting : Thermosiphon Case

Issue	Thermosiph Syste		ct Thermosiphon Indirect System		Cause (s)	Corrective Action (s)
Collector type	Flat Plate	Evacuated Tube	Flat plate	Evacuated Tube		
	Х	Х	Х	Х	Backup electrical	Clean/replace
Not hot water in					resistance doesn't	electrical
winter					work	resistance
Wille	X	X	Χ	X	incorrectly set	Set the
					temperature at	temperature at
					thermostat	50°C
	Х	X	Χ	X	Defective	Replace
					thermostat	thermostat
	X	X	Χ	X	Safety group	Clean/replace
Not hot water					blocked at closed	safety valve
pressure					position	
pressure	X	X	Χ	X	Inlet hot water	Clean/remove
					flow pipe clogged	limestone
					with limestone	
	X		Х		Defective collector	Replace defective
Humidity in					joint	joint
Humidity in collector	Х		Х		Condensation	Unblock holes
Collector					holes are blocked	

Maintenance & repair Troubleshooting: Thermosiphon case

Issue	Thermosiphon Direct System		Thermosiphon Indirect System		Cause (s)	Corrective Action (s)
Collector type	Flat Plate	Evacuated Tube	Flat plate	Evacuated Tube		
Lack of hot water pressure	Х	Х	X	X	Significant pressure losses Large scale deposit Pressure fault in	Descale and purge collectors and Tank Check and clean safety group
					network	
High temperature difference between collector and water	X				Tube grid collector clogged with limestone	Descale and purge tube grid collector
tank			Х	Х	Heat exchanger covered with limestone	Descale and clean heat exchanger
Noisy installation	Х	Х	Х	Х	Pressure drop or charged water	Purge and increase pressure if necessary
Back up electrical resistance doesn't work at the cold season start	Х	Х	X	Х	Thermostat switched off for safety (Above 90°C thermostat deactivates electric resistance)	Restart thermostat

Thermosiphon system installation

Training of SWH installer & maintainer

DAY2 – PRACTICAL PART Thermosiphon system installation

Objective:

- ✓ Practice the knowledge of the first day
- ✓ Improve skills of installers
- ✓ Get trained on the installation
- ✓ Use the SWH manual

Duration

- ✓ 6 hours with one coffee break and one lunch break
- ✓ From 9:00 to 15:00
- ✓ Close phones
- ✓ Don't speak to each other

DAY2 – PRACTICAL PART Thermosiphon system installation

- □SWH pre-installation preparation in site
- □SWH components inspection in site
- ☐ Steel structure assembling
 - ✓ Structure for collectors
 - ✓ Structure for tank
 - ✓ Stone concrete fixation
- □ Collector installation
 - ✓ Individual collector
 - ✓ Series collectors

-				-
- 61	Ιi	М	0	-2
- 31		ш	_	

YE1

YE2

For evacuated tube and flat plat Yahia El-Masry, 04-Aug-20

Please put pictures for the steps that you are going to do in the installation

Yahia El-Masry, 04-Aug-20

DAY2 – PRACTICAL PART Thermosiphon system installation

- ☐ Tank installation
 - ✓ Horizontal positioning
 - √ Water pressure
- ☐ Connection between different components
 - ✓ Cold water connection
 - ✓ Hot water connection
- ☐ Installation of accessories
 - ✓ Safety valve
 - ✓ MG Anode
 - √ Thermostat
 - √ Backup system
 - ✓ Electrical connection
 - ✓ Electrical earth

DAY2 – PRACTICAL PART Thermosiphon system installation

Organization:

- ✓ Work in small groups
- ✓ Identify SWH components
- √ Identify necessary tools
- ✓ Follow the trainer instructions
- ✓ Follow the SWH manual of installation
- ✓ Respect safety requirements
- ✓ Have the individual safety equipment's

Commissioning
Thermosiphon
systems & best
practices

Training of SWH installer & maintainer

DAY2 – COMMISSIONING & BEST PRACTICES SWH installation and maintenance

Objective:

- ✓ Why the commissioning is important?
- ✓ Best practices in SWH installation
- ✓ Best practices of SWH maintenance

Duration

- ✓ 2 hours
- ✓ From: 15:00 to 17:00
- √ Close phones
- ✓ Don't speak to each other

COMMISSIONING Filling and Rinsing

The hydraulic circuits filling depends on the SWH type:

- □ Direct system
- ☐ Indirect system
- ☐ Forced circulation system

Filling step have to take place for hours at low sunshine otherwise after covering the collectors to avoid thermal shocks

COMMISSIONING Filling and Rinsing: Thermosiphon case

Direct system (open loop)

- 1. Open at least one hot water tap in the house
- Open the safety group cold water inlet to fill the tank and collector
- 3. Leave the hot water tap open until the air bubbles have completely disappeared, then close and allow the tank to build up pressure
- 4. Check any leakage on the pipeline
- Open the hot water tap again to check that all air is purged from the system

COMMISSIONINGFilling and Rinsing: Thermosiphon case

Indirect system (close loop)

- 1. Follow the steps 1-4 of the direct system list to purge all air from the storage tank
- 2. In an indirect system, the working fluid solution (antifreeze) that is circulated may need to be filled in depending on the type of system. Follow manufacturer's instructions for filling collector loop with this antifreeze fluid. This generally involves cracking a nut or a fitting at the highest point in the collector loop to allow air to escape while antifreeze fluid is filled from a low point in the system. Antifreeze fluid is filled either by a bucket connected via a hose and held at height over the system, or with specialized manual pumps
- 3. Open the hot water tap again to check that all air has been purged from the system.

COMMISSIONING Check list commissioning actions

Visual inspection of the system installation and workmanship to ensure proper installation and that the area is left clean
Ensure that there is no obstacle (building, tree, etc.) shading the solar collector or a part of it. Ensure ladders, scaffolds or safety tapes installed during installation are removed from the site. Any dug outs should also be filled up
Verification of whether the installed components meet the stated specifications
The system should be flushed out with cold water to ensure that any dirt inside the piping is removed.
Ensure that there is no blockage and that the safety group, safety valve, Air vent and thermostatic mixing valve are properly installed and are easily accessible.
Ensure that there is no air trapped inside the collector and the storage tank
Testing for leaks should be done by carrying out a test run and pressurizing the system for at least 24 hours before handing over to the owner
Verify that the back-up heater is working as required and confirm the correct operation of the thermostats and safety controls.

COMMISSIONING Check list commissioning actions

The controller should also function properly and be able to measure the output water temperature accurately
Verify that the system is well insulated to reduce heat losses
Check the fluid level for the closed circuit (indirect systems) and fill it, if necessary
Check all the pipes and ensure they are well placed and adequately secured or clipped
Verify that the various parameters such as the flow rate, pressure and temperature of the various components are as designed. The variable settings critical to the performance of the system are adjusted, set and recorded

Note: The electrical back up should be tested after the leak test is done and when the storage tank is full.

BEST PRACTICES Installation and maintenance

Proscribed Practice

Bad practices

Something to avoid

Negative design

Bad connections

Accidents

Not safety

.

Good Practice

Best practices

Something to copy

Positive design

Good connections

Prevent accidents

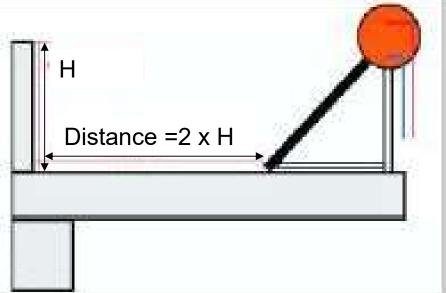
Make safety

.

BEST PRACTICES Transport & handling

Proscribed Practice

Good Practice


Have adequate handling and transport equipment (cord, ladder,...)

BEST PRACTICES Shadow & orientation

Proscribed Practice

Good Practice

The minimum distance from the obstacle : 2 x obstacle hight

YE6

We need high resolution pictures Yahia El-Masry, 04-Aug-20

BEST PRACTICES Piping insulation

Proscribed Practice

Good Practice

The hot water flow have to be insulated

BEST PRACTICES Non-compliance of the electrical connection

Proscribed Practice

Good Practice

- Differential Circuit breaker :30 mA
- Minimum electrical cable section : 2.5 mm2

Respect the minimum amperage and minimum electrical cable section

BEST PRACTICES Non-compliance of the electrical connection

Proscribed Practice

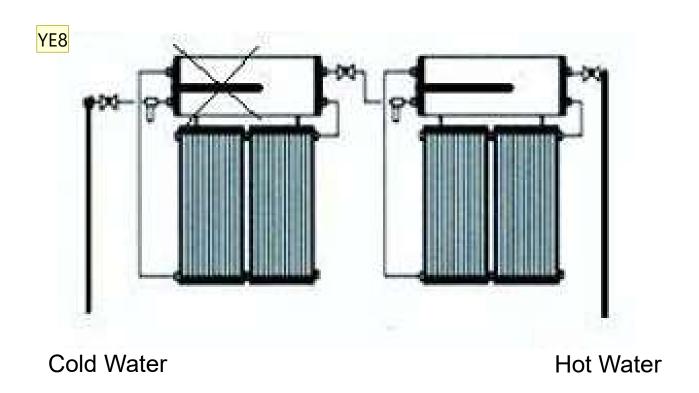
Good Practice

Respect the good wiring

BEST PRACTICESHot water piping material

Proscribed Practice

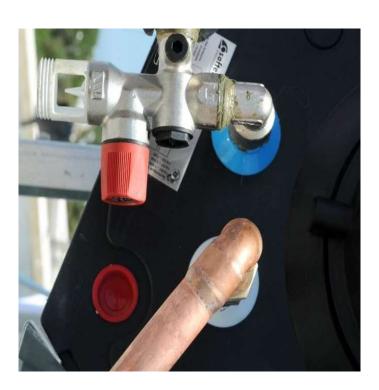
Good Practice



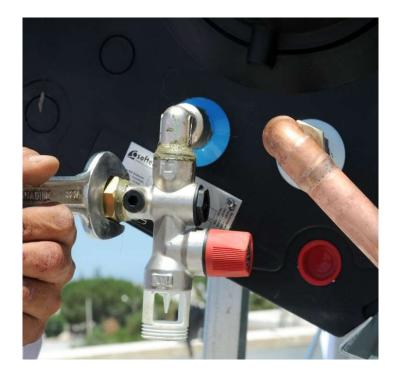
Multilayer material

Copper material

BEST PRACTICES electrical backup position for SWH in serie


The electric backup will be installed on the last SWH

YE8


We need high resolution pictures Yahia El-Masry, 04-Aug-20

BEST PRACTICES Safety group position

Proscribed Practice

Good Practice

The safety group have to be mounted in vertical position for safety persons

BEST PRACTICES Thermostatic Mixer Utility

Proscribed Practice

Good Practice

YE9

Use thermostatic mixer to save hot water and prevent accidental burns

YE9

We need high resolution pictures Yahia El-Masry, 04-Aug-20

BEST PRACTICES Concrete fixing slabs

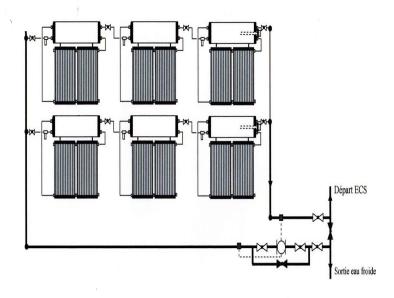
Proscribed Practice

Good Practice

Use mortar to fix the slabs on the floor and screws to fix the frame on the slabs

BEST PRACTICES Roof waterproofing

Proscribed Practice



Good Practice

- Do not install the SWH directly on the roof waterproofing without mechanical protection
- Avoid fixing anchors or other means of fixing directly on the roof terrace
- Avoid waterproofing rising at the acroterion (extension of the façade wall to the roof terrace), and use rigid sleeves for all crossings of foundation walls.


BEST PRACTICES Tickelman loop

Proscribed Practice

A series-parallel assembly must respect a set of rules, including the hydraulic balancing of the rows. The water passes through the least resistant circuit. So poor irrigation for the most distant rows

Good Practice

A series-parallel assembly in Tickelman loop way provides a better mass flow balance in circuit even for far rows

BEST PRACTICESWaterproofing connection

Proscribed Practice

Good Practice

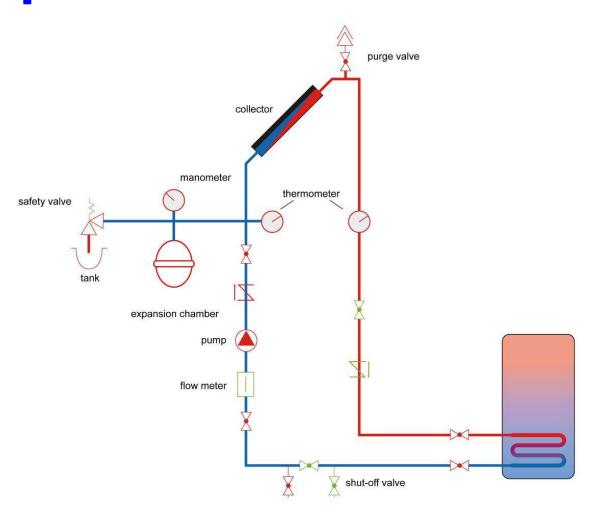
Teflon joint

Tow (hemp) joint

SWH: Forced circulation systems

Training of SWH installer & maintainer

DAY3 – SWH: Forced circulation systems SWH installation and maintenance


Objective:

- ✓ Why the forced circulation systems?
- ✓ Components of FSWH
- ✓ Best practices in installation and maintenance
- ✓ Best practices in commissioning

Duration

- √ 1:30 hours
- ✓ From: 9:00 to 10:30
- ✓ Close phones
- ✓ Don't speak to each other

FORCED CIRCULTION SWH System components

Primary circuit components:

- Pump
- Expansion tank
- Safety valve or pressure relief valve
- Regulation
- Sensor (thermometer), flow meter
- Piping
- Purge valve or Air vent
- Non-return valve
- Coolant (antifreeze)

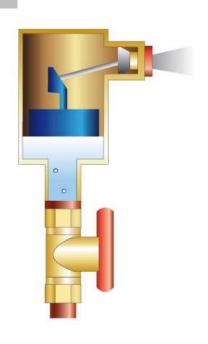
FORCED CIRCULTION SWH System components

Pump

Pump sizing based on system flow and pressure losses

FORCED CIRCULTION SWH Security system components

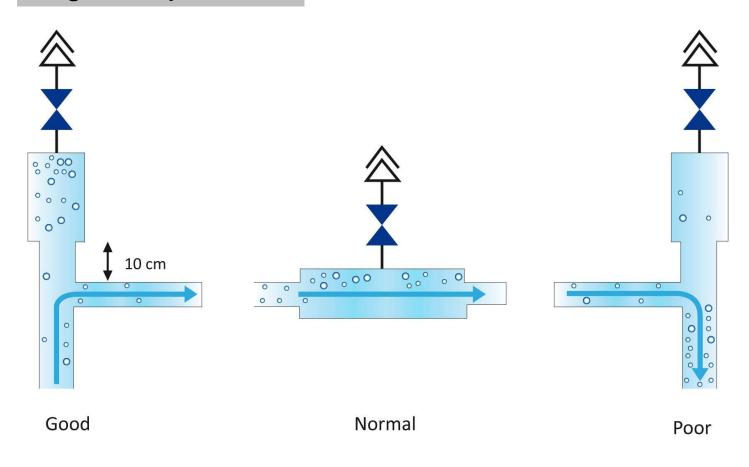
Safety valve

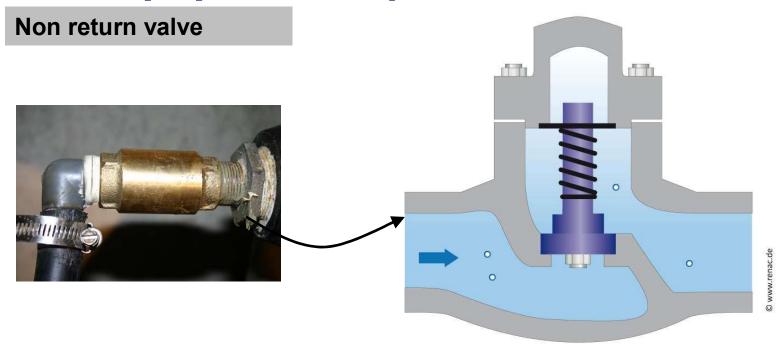

A valve that opens automatically to relieve excessive pressure more than 6 Bars (in general)

FORCED CIRCULTION SWH Security system components

Purge valve or Air vent

Manual Purge Valve


Automatic Purge Valve


a valve that opens to purge or release air from the circulation loop

FORCED CIRCULTION SWH Security system components

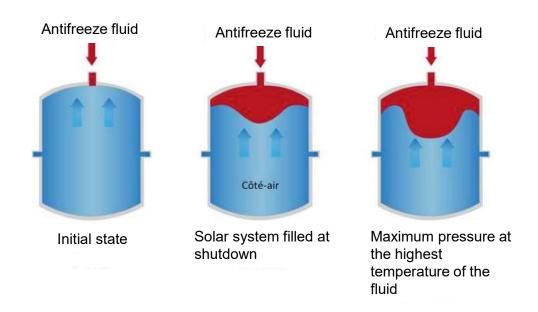
Purge valve position

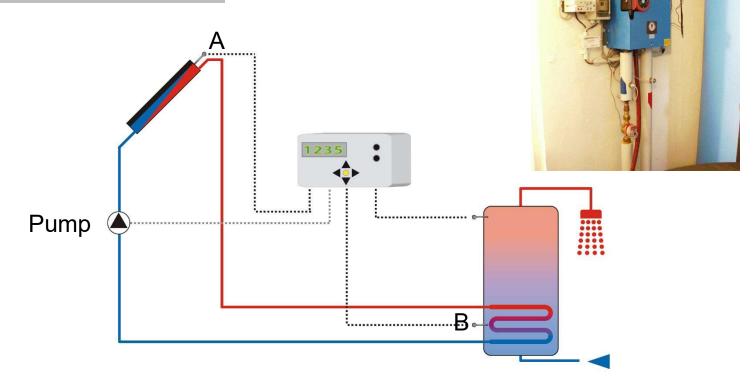
www.renac.de

- Used to prevent liquid from going in the wrong direction
- Prevents return flow (overnight)

Ex: Connection of the system / house to the sanitary water network, to avoid contamination of the supply network

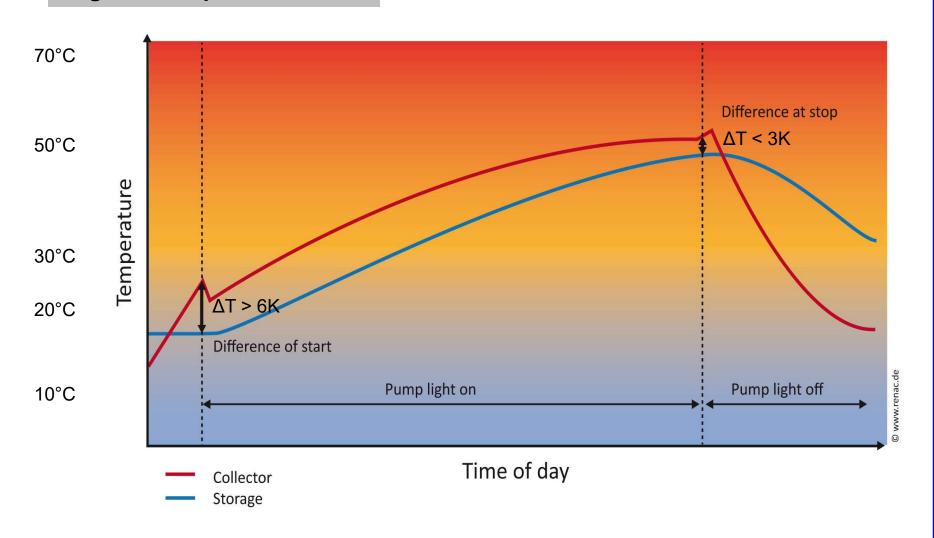
Ex: to force the flow in desired direction


Expansion Tank

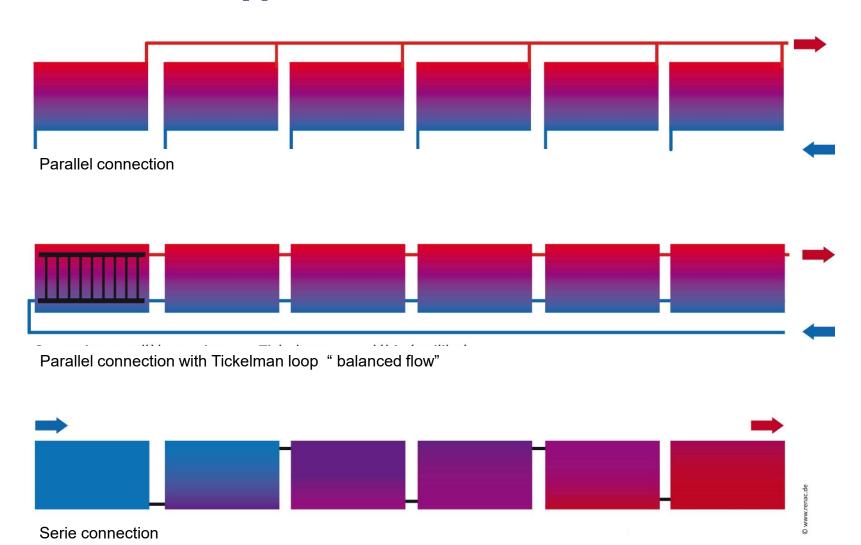

- To prevent loss of heat transfer fluid from the system via safety valve
- To allow the system to operate with the same safety
 In a stagnant state
- To protect the system components against the effects of high temperatures and pressures, as well as pressure and condensation shocks.

Expansion Tank operation

- The expansion tank compensates the fluid expansions and contractions
- The gas (air or nitrogen) and fluid are separated by a rubber membrane
- The rubber membrane can only withstand temperatures up to around 90 ° C


Regulation operation

If temperature $A > B + 6 K \rightarrow pump light on$ If temperature $A < B + 3 K \rightarrow pump light off$


K: Kelvin

Regulation operation

FORCED CIRCULTION SWH

Connection type

Serie connection case :

Total Flow

$$Q_{total} = Q_{collector}$$

Total Pressure losses

$$\Delta P_{\text{total}} = \Delta P_{\text{coll 1}} + \Delta P_{\text{coll 2}} + \Delta P_{\text{coll 3}} + \dots \Delta P_{\text{coll n}}$$

Parallel connection case :

Total Flow

$$Q_{\text{total}} = Q_{\text{coll 1}} + Q_{\text{coll 2}} + Q_{\text{coll 3}} + \dots Q_{\text{coll n}}$$

Total Pressure losses

$$\Delta P_{\text{total}} = \Delta P_{\text{collector}}$$

Description	Specific flow (I/h m ²)	Temperature rise (°C)
Low flow	12-15	34-43
Medium flow	15-30	17-34
High flow	>30	<17

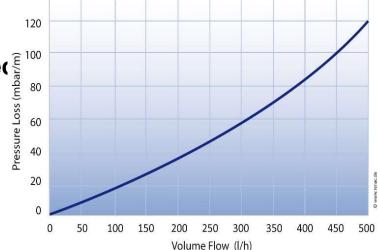
Exercice 1

A collector field consists of 25 collectors with an active area of 2m2 per collector. Calculate the total flow of the system in a 'low-flow' system in which the specific flow = 15l / h m2

Allocated time 15 min

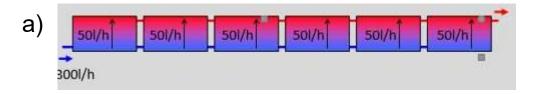
Exercice 1 : Solution

$$q_{total} = q_{spec} \times \text{no. de capteurs} \times A_{active}$$


$$q_{total} = 15L/hm^2 \times 25 \text{ capteurs} \times 2m^2 = 750L/h$$

Exercice 2

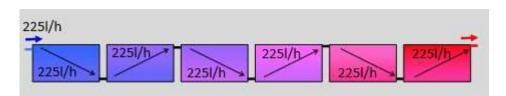
Allocated time 30 min


A collector field is made of 6 collectors each having an active area of 2.5 m². The minimum flow rate that each collector have to receive is 50l / h. Find below the pressure drop curve of the collector:

- a) What are the pressure losses if the collection are connected in parallel and the total flow is 300l / h?
- b) What is the specific flow rate (in I / h m2) for a row of collectors?

- c) What are the pressure drops if the collectors are connected in series and the total flow is 225 L / h?
- d) What is the specific flow rate (in I / h m2) for a row of collectors

Exercice 2: Solution



According to the graph, the pressure drops per collector at 50l / h = 10mbar. Since the collectors are connected in parallel, the total pressure drop is also 10mbar.

b)

specificflow =
$$\frac{300L/h}{15m^2}$$
 = $20L/hm^2$

c)

According to the graph, the pressure drops per collector at 225l / h = 43mbarSince the collectors are connected in series, the total pressure drop is $43mbar \times 6 = 258mbar$

débit spécifique =
$$\frac{225L/h}{15m^2}$$
 = 15L/hm

FORCED CIRCULTION SWH Temperature rise at collector field

$$\Delta T = \frac{P_{\text{spec}}}{q_{\text{spec}} \times \rho \times C}$$

P_{max} = 1000W/m²

with:

- △T = Temperature rise at collector field, in K or °C
- P_{spec} = Specific power in W/m2
- $q_{\rm spec}$ = Specific flow, in m³/(s.m2)
- ρ = Water density, 1000 kg/m³
- C = : Heat capacity of water, 4200 J/kgK

FORCED CIRCULTION SWH Temperature rise at collector field

Exercice 3

$$\Delta T = \frac{P_{\text{spec}}}{q_{\text{spec}} \times \rho \times C}$$

Allocated time 15 min

Consider that the solar irradiance is 800W / m2 and the efficiency of the collector is 55%.

The density of water is 1000kg / m3 and that its specific heat capacity is 4200 J / kgK.

a) Calculate the temperature increase across the collector field in a 'low-flow'

system in which the specific flow = 15l / h m2

b) Calculate the temperature increase across the collector field in a 'high-flow' system in which the specific flow = 40l / h m2

FORCED CIRCULTION SWHTemperature rise at collector field

Exercice 1: solution

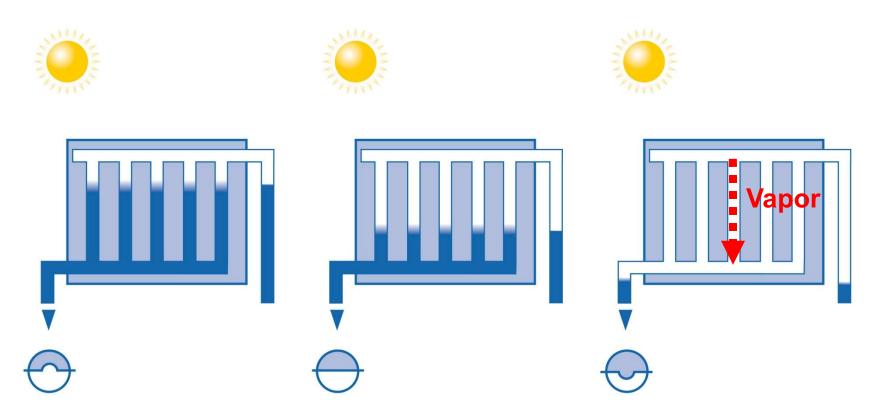
a)
$$\Delta T = \frac{P_{capteur}}{q \times \rho \times C}$$

$$\Delta T = \frac{800W / m^2 \times 0.55}{\left(\frac{15}{1000 \times 3600}\right) m^3 / s \times 1000 kg / m^3 \times 4200 J / kg K} = 25K$$

b)

$$\Delta T = \frac{800W / m^2 \times 0.55}{\left(\frac{40}{1000 \times 3600}\right) m^3 / s \times 1000 kg / m^3 \times 4200 J / kg K} = 9.24 K$$

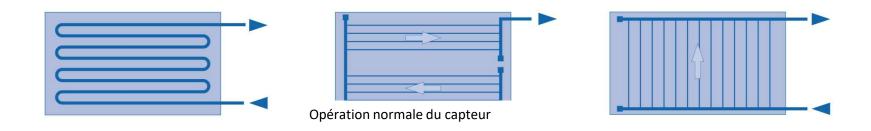
FORCED CIRCULTION SWH Stagnation

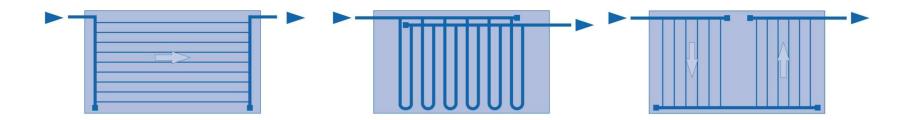

Situation where hot water is not discharged when in the same time there are high and continuous irradiation levels incident on the collectors

CAUSES:

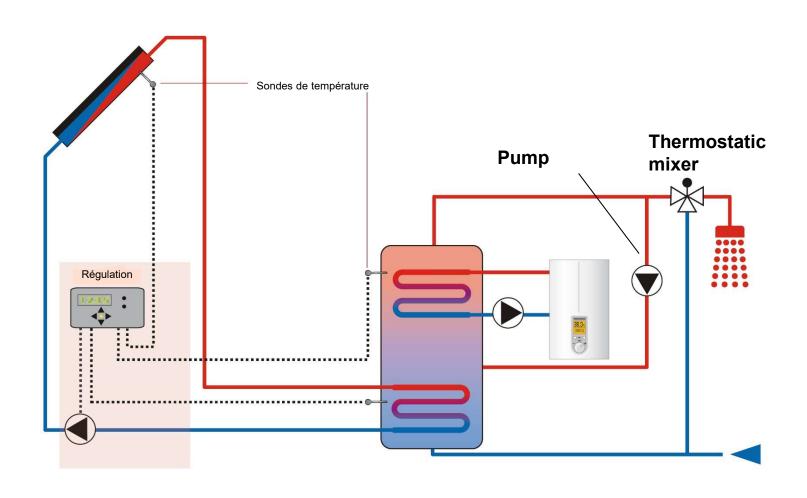
☐ No fluid

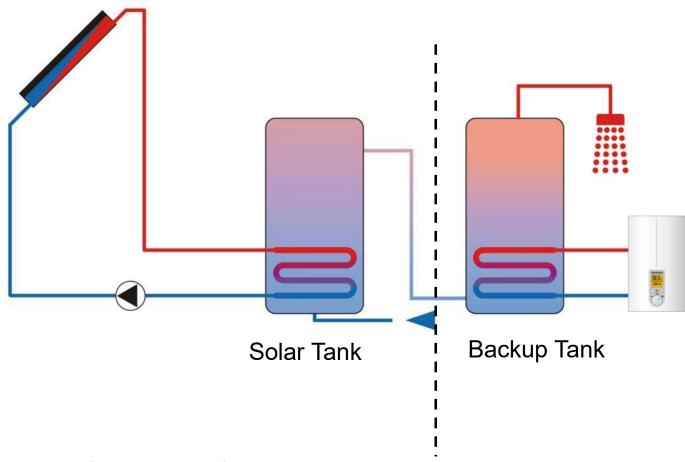
□ No hot water requirements
 □ Storage tank has reached its maximum temperature
 □ Pump is broken
 □ Blackout
 □ Failure of regulation or collectors
 □ No flow


FORCED CIRCULTION SWH Stagnation

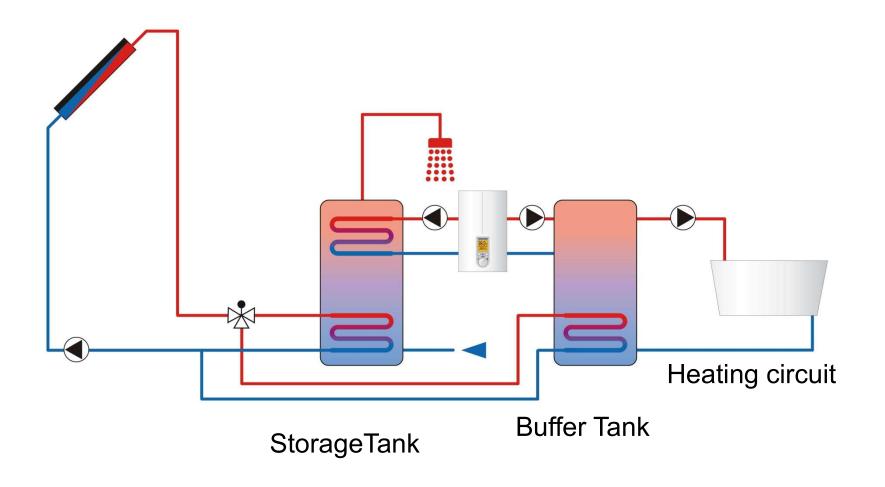

At the stagnation case, Vapor formation in collector tube

FORCED CIRCULTION SWH Stagnation behavior

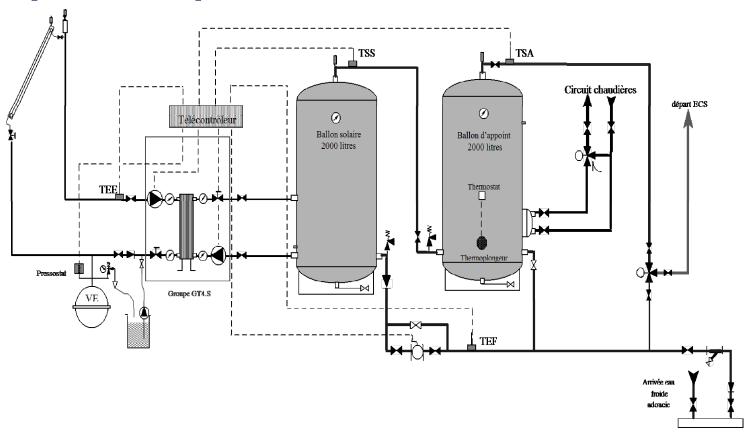

Steam or vapor easily leaves the collector, ensuring low pressure


 Steam or vapor leaves the collector with difficulty, which has the effect of trapping liquid under high pressure

FORCED CIRCULTION SWH Classic system with backup


FORCED CIRCULTION SWH System in series

Connect the first tank outlet pipe to the second tank inlet pipe


FORCED CIRCULTION SWH

Mixing system: Heating + DHW

FORCED CIRCULTION SWH

Simple example

FORCED CIRCULTION SWH Commissioning

- a. Rinsing the primary circuit
- b. Filling the primary circuit
- c. Parameter setting
- d. Test the system
- e. Purging air from the secondary circuit

FORCED CIRCULTION SWH Commissioning

Rinsing the primary circuit (solar circuit between collectors and storage tank)

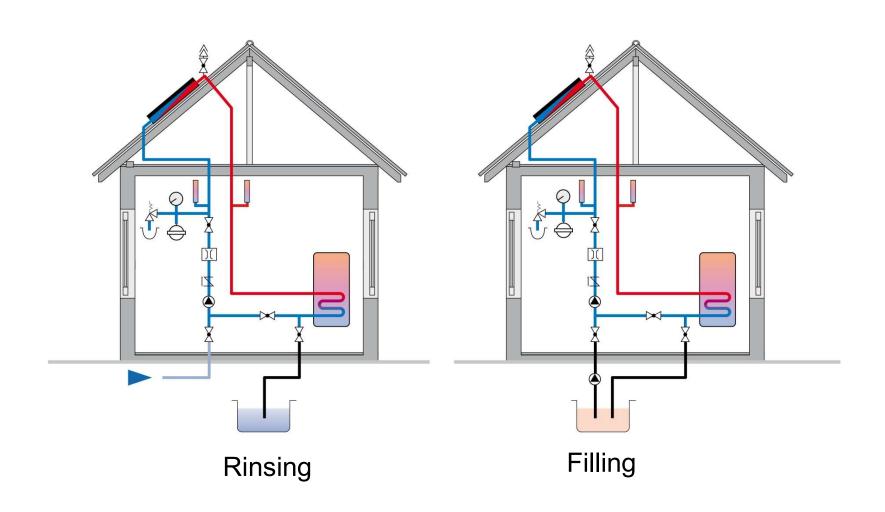
Rinsing the primary circuit is very important specially if pipes have been connected by **welding** or **soldering**.

Dirt ore tinder could be left in the pipes and can cause **malfunction** of the system.

Other ways thin pipes in the collectors heat exchangers pumps or flow controls can be **blocked**.

Rinsing the system with water is not possible for the collector field during **high** radiation or temperatures below zero.

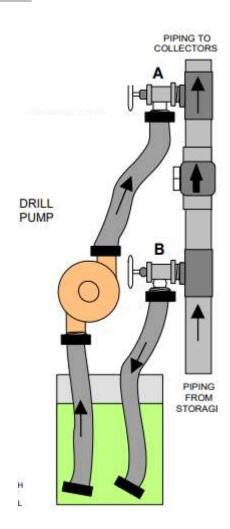
If the system is not being filled afterwards make sure there is **no liquid left** in the collector field.


FORCED CIRCULTION SWH Commissioning

Filling the primary circuit

- Adjust the pressure on the air side of the expansion tank
- Fill the system slowly when draining from the top
- Quickly fill the system when draining from the bottom
- Use a pre-diluted solution of antifreeze fluid (if necessary)
- Set the pressure to a preset value (equal to the height of the installation above the expansion tank, increased by 0.6 bar, with a minimum of 1 bar)
- Maintain the circulation for a few hours or a day
- Monitor system pressure repeatedly
- Close the automatic air vents at the end of the air purge

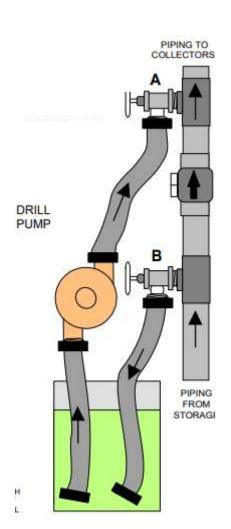
FORCED CIRCULTION SWH Commissioning


Filling / Rising the primary circuit

FORCED CIRCULTION SWH Commissioning

Practical Rinsing Procedure

The collector loop should be purged with water prior to filling. This can be done with a garden hose hooked to valve A with valve B open and draining the purged water. This will get all solder flux and other impurities out of the system.



FORCED CIRCULTION SWH Commissioning

Practical Filling Procedure

After the system is purged it should be drained:

- 1. Fill the bucket with a solution of propylene glycol and water.
- 2. Open both valve A and B if they are not already open.
- 3. Start the pump and pump the solution into the system through valve A. You should see air bubbles coming back into the bucket through the hose connected to valve B.
- 4. Add more solution to the bucket if necessary always making sure to add equal parts of propylene glycol and water. When the system is full, the liquid will flow into the bucket.
- 5. Keep pumping for a few minutes until the liquid coming from valve B no longer has any air bubbles in it.
- 6. Keep the hoses connected and while still pumping let any air out of the system at the top point in the system either the pressure relief valve (safety valve) or the air vent.
- 7. When all of the air is out of the system close valve B and watch your pressure gauge.
- 8. Pump the system up to between 1 and 2 bars or the maximum pressure of your pump.
- 9. Close valve A and disconnect the hoses slowly to catch any spills. The system is ready to run

FORCED CIRCULTION SWH Commissioning

Parameters setting

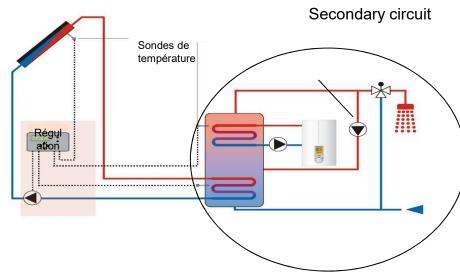
- Set all pumps to a given speed or power settings
- Set the volume flow to a value given in all circuits
- Adjust all pressure settings
- Set all parameters for system regulation
- Calibrate the measurement system
- Test / adjust pressure safety valves
- Adjust the thermostatic mixer
- Document all parameters and settings

FORCED CIRCULTION SWH Commissioning

System Test

- Check the temperature indicated on all thermometers
- Test all control operations
- Test motorized pumps and valves
- Check the temperature difference at the heat exchangers
- Check for leaks
- Test all fuses, switches and electrical outlets
- Test the warning lights and audible alarms
- Check the antifreeze fluid

FORCED CIRCULTION SWH


Commissioning

Purging air from the secondary circuit (between storage tank and water tap house)

☐ Open at least one hot water tap in the house

□ Leave the hot water tap open until the air bubbles have completely disappeared, then close and allow the tank to build up pressure

☐ Check any leakage on the pipelir

SWH: Practical part with forced systems

Training of SWH installer & maintainer

Objective:

- ✓ Practice the knowledge of the design/morning
- ✓ Improve skills of installers in forced systems
- ✓ Get trained on the installation of forced system

Duration

- √ 6:30 hours with one coffee break and one lunch break
- ✓ From 10:30 to 17:00
- ✓ Close phones
- ✓ Don't speak to each other

□ Collector installation □Individual collector ☐ Series collectors ☐ Tank installation ☐ Horizontal position □Water pressure □ Circulator ☐ Heat exchanger □ Insulation □ Accessories (Pump station, expansion tank, safety valves devices)

□ Connection between different componen Cold water connection
□ Hot water connection
□ Exchanger connection
□ Circulator connection
□ Safety equipment
□ Individual
□ Collective
□ Tools

□Individual tools

□ Collective tools

Please add pictures for the steps Yahia El-Masry, 04-Aug-20

YE1

- ☐ Measurement devices
 - temperature sensors
 - pressure gauge
 - Flow rate gauge
- Verification
- ☐ Manual of operation
- □ Commissioning the installation
- □Advise for operating
- ☐ Best practices for maintenance

DAY2 – PRACTICAL PART Thermosiphon system installation

Organization:

- ✓ Work in small groups
- ✓ Identify SWH components
- √ Identify necessary tools
- ✓ Follow the trainer instructions
- ✓ Follow the SWH manual of installation
- ✓ Respect safety requirements
- ✓ Have the individual safety equipment's

SWH: Practical part for maintenance & repair

Training of SWH installer & maintainer

DAY4 - PRACTICAL PART Maintenance and repair

Objective:

- ✓ Practice the knowledge of SWH manual
- ✓ Improve skills of installers on M&R
- ✓ Get trained on Maintenance and repair

Duration

- ✓ 3:30 hours with one coffee break and one lunch break
- ✓ From 9:00 to 12:30
- ✓ Close phones
- ✓ Don't speak to each other

DAY4 - PRACTICAL PART Maintenance and breakdowns repair

☐ Preventive maintenance (Refer to Preventive checklist) ☐ Guarantee
☐ List of preventive maintenance ☐ Operation way
☐ Manual of maintenance provided by suppliers
☐ Identification of faults (Refer to Practical guide : Diagnosis method) ☐ Check list of trouble shootings ☐ Diagnosis ☐ Component identification ☐ Costing
☐ Curative maintenance (Refer to troubleshooting checklist) ☐ Correction ☐ Verification ☐ Handout

SWH: Maintenance and repair forced systems

Training of SWH installer & maintainer

DAY4 – MAINTENANCE & REPAIR SWH forced systems

Objective:

- ✓ Increase knowledge on maintenance of forced SWH
 - Preventive
 - Curative
- ✓ Improve skills of installers on M&R for FSWH
- ✓ Get trained on maintenance and repair of FSWH

Duration

- √ 1:30 hours with one coffee break
- ✓ From 13:30 to 15:00
- √ Close phones
- ✓ Don't speak to each other

Maintenance & repair Check list for preventive maintenance

In the event of maintenance or repair, cut off the cold water supply and electricity before taking any action

Component inspection	Action(s)	
Flat plate Collector/ evacuated tube	Look for cracks in the collector/ evacuated tube glazing,	
glazing and seals	and check to see if seals are in good condition	
Plumbing, pipework, and wiring	Look for fluid leaks at pipe connections. Check pipe	
connections	connections and seals. pipes should be sealed with a	
	mastic compound. All wiring connections should be tight	
Piping and wiring insulation	Look for damage or degradation of insulation covering	
	pipes and wiring	
Roof penetration	Flashing and sealant around roof penetrations should be in	
	good condition.	
Support structures	Check all nuts and bolts attaching the collectors to any	
	support structures for tightness	
	Check the metal condition (anti corrosion paint if	
	necessary)	
Safety valves	Make sure the valve is not stuck open or closed	

Maintenance & repair Check list for preventive maintenance

Component inspection	Action(s)	
Pump	Verify that distribution pump is operating. If you can't hear a pump	
	operating, then either the controller has malfunctioned or the pump has	
	broken	
Regulation	Check the regulation is operational	
	Data displayed by the regulation is plausible	
	Temperatures displayed by the regulation are plausible (periodically measure	
	the resistance of temperature sensors)	
Antifreeze fluid	Check and / or change the antifreeze fluid in the closed circuit. The	
	frequency of this operation is often reported in the supplier's manual	
Storage tank	Regular drain and clean the Tank storage to prevent the risk of bacterial	
	proliferation	
	Check for cracks, leaks, rust, or other signs of corrosion	
Magnesium anode	Check the anode state. When the anode reaches a level of wear, its diameter	
	becomes very small, which causes leaks at the clamping nut. This problem is	
	accelerated by the non earthing of the anode (quite frequent case)	
Back up (electrical case)	Check any damage to the sleeves, electrical cables	
	Check that the electrical connections and grounding are in good condition.	
	Check the thermostat setting	
	Check the condition of the electric resistance (scale deposit)	

PROBLEM	CHECK THIS	POSSIBLE CAUSE	CORRECTIVE ACTION
	Auxiliary Heater	No power to auxiliary back-up heating	Check high temperature
	(electric)	element	protection and push reset
			button above thermostat.
			(Use caution when dealing with electricity.)
		Failure to ignite	Check pilot light mechanism
	Auxiliary heater (gas)	Safety switch malfunctioning	Check and replace
No hot water		Defective automatic pilot valve	Check and replace
		Pilot valve defective	Replace
		Loose thermocouple connection	Tighten
		Defective thermocouple	Replace
		Improper pilot gas adjustment	Adjust
	Auxiliary heater thermostat	Thermostat defective	Replace
	Mixing valve		Check water temperature
		Improper adjustment	at house faucet and adjust valve setting
		Valve defective	Replace or remove from system plumbing
	Distribution piping	Leak (under slab or in walls)	Locate leak and correct

PROBLEM	CHECK THIS	POSSIBLE CAUSE	CORRECTIVE ACTION
		Undersized for hot water demand load	Replace
		Storage tank losses	Insulate tank
	Auxiliary heater	Thermostat set too low	Increase set point temperature
		Element failure	Replace element
Not enough hot water		Thermostat failure	Replace thermostat
		Lower element	Reconnect element and set thermostat to
		disconnected in	and set thermostat to low temperature
		conventional rank	
		system	
Non return valv		Heat loss due to	
		defective or improperly	Inspect valve and
		installed check valve	repair or replace

PROBLEM	CHECK THIS	POSSIBLE CAUSE	CORRECTIVE ACTION		
		Absorber coating degradation	Recoat or replace absorber (Contact manufacturer)		
		Area undersized	Increase collector area (See FSEC Sizing Guide)		
		Excessive condensation	Inspect and repair glazing seal, pipe		
			gaskets and weep holes and vents at bottom		
		Glazing dirty	Clean as required		
		Leaks	Repair		
Not enough hot water Collector(s)	Orientation	Check orientation. Face collector " south			
	Outgassing inside collector glazing	Clean surface and contact manufacturer			
		Plastic glazing deteriorating	Replace		
		Reduction of glazing transmission	Replace glazing		
		Shaded by tree(s) or building(s)	Remove obstacle and shading or		
			relocate collectors(s)		
		Improper tilt	Check tilt for geographic area. Set "15° of latitude		
		Improperly plumbed	Compare with system schematic in		
		P - P - 7 - 7 - 2	installation Manual		

PROBLEM	CHECK THIS	POSSIBLE CAUSE	CORRECTIVE ACTION
		Improper operation (cycling, late turn on)	Check sensor placement and insulation from ambient conditions
		Faulty sensors or controller	Conduct resistance measurement or check by placing sensors against hot and
	Differential controller	,	cold-water glasses and watching pump function. Replace defective units.
		Improper wiring or loose	Compare with system schematic. Check
Iso		connections	for proper connections. Seal all splices against moisture.
		Shorted sensor wiring	Check wiring for breaks, metal contact, water exposure and corrosion.
	Heat exchanger	Sized too small	Replace with properly sized heat exchanger. Insulate.
		Scaling, clogging	Back flush, clean
	Isolation valves	Closed	Open
	Mixing valve	Improperly adjusted	Reset temperature indicator
	Owner	High water usage	Check system size and discuss solar system and owner's lifestyle

PROBLEM	CHECK THIS	POSSIBLE CAUSE	CORRECTIVE ACTION	
		Clogged with corrosion or sediment	Replace excessively corroded components	
		Insufficient insulation	Add insulation where required	
		High heat losses	Check insulation for splits, deterioration, absence	
	Piping Not enough hot water	Nighttime thermosiphoning	Check for pump operation at night.	
Not enough		Improperly plumed	Compare with system schematic. Check flow direction.	
hot water		hot water	Isolation valves closed	Open valves
		Isolation valve failure after closing	Replace valve	
		Flow blockage	Flush system. Check effluent for dirt/scaling.	
		Low system pressure	Check pressure gauge. Refer to owner's manual for correct pressure.	

PROBLEM	CHECK THIS	POSSIBLE CAUSE	CORRECTIVE ACTION	
		No power	Check breaker, pump, and controller. Repair or replace.	
		Flow rate too high or too low	Adjust flow rate	
		Defective	Check and replace	
		Faulty pump	No power	Check breaker, pump cord, controller fuse, if any. Replace if necessary.
Not enough			Faulty pump	Listen for irregular noises in pump operation. Feel collector feed and return
hot water			pipes for temperature difference.	
		Runs continuously Improperly installed	Runs continuously	Check control system for breaks and shorts
			Compare with system Schematic	
		Too small	Install larger tank	
		Storage losses	Insulate tank with insulation blanket	
	Sensors	Improper wiring, cuts, or loose connections	Check and correct	

PROBLEM	CHECK THIS	POSSIBLE CAUSE	CORRECTIVE ACTION
	Non return valve	Stuck open or does not seat	Replace non return valve
	Controller	Sensor wires reversed	Check wiring and reconnect
No hot water in morning	Water heater circuit breaker	Water heater circuit breaker shutoff	Turn breaker back on
	Occupants	Excessive consumption	Discuss hot water usage.
	·	·	Check system size and auxiliary heater status.
	Auxiliary heater	Thermostat set point too high	Reduce set point temperature
Water too hot	High limit sensor	Improper calibration	Check, recalibrate and replace
	Occupants	No hot water use (vacation, etc.)	Run hot water to reduce tank temperature
	Mixing valve	Temperature set too high	Adjust
	Mixing valve	Valve failure	Replace valve
No water	Cold-water supply valve	Valve closed	Open valve

PROBLEM	CHECK THIS	POSSIBLE CAUSE	CORRECTIVE ACTION
		Controller switch in "off" position	Turn to "automatic" or normal operating position.
	Differential controller	Unplugged	Return power to controller
		On and/or off temperature differential set points too high	Reset according to specifications
Pump does not start		Loose contacts	Clean contacts and tighten connections or replace
		Defective components	Replace components or Controller
	Controller circuitry	Sensors connected to wrong terminal	Correct per manufacturer's recommendations
	Electrical power supply	On/off switch is "off"	Turn to "on"
		Blown fuse or breaker tripped on overload	Determine cause and replace fuse or reset breaker
		Defective	Check and replace, if required

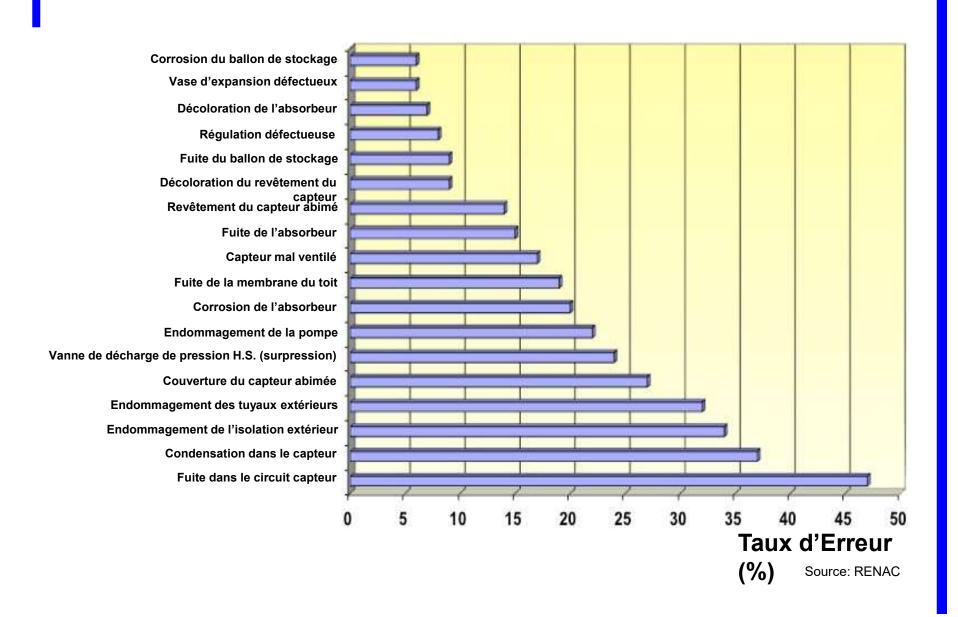
PROBLEM	CHECK THIS	POSSIBLE CAUSE	CORRECTIVE ACTION
		Motor failure	Check brush holders and other mechanical components that may be loose, worn, dirty or corroded. Replace as appropriate and reasonable. Check for thermal overload.
	Pump	Pump motor runs when started by hand. Capacitor failure.	Replace capacitor
		No power	Check breaker, cord and Controller
		Stuck shaft or impeller	Replace
Pump does not start	Sensors Sensor wiring	Defective sensor(s)	Replace
		Improper installation	Clean and reinstall properly
		Sensors out of calibration	Recalibrate or replace
		Defective sensor wiring	Repair or replace
		Open collector sensor wiring	Check wiring continuity. Repair or replace.
		Shorted tank sensor wiring	Check wiring for continuity. Repair or replace.

PROBLEM	CHECK THIS	POSSIBLE CAUSE	CORRECTIVE ACTION
	Differential	On and off temperature differential set points are too close together	Reset according to specifications
	controller	Faulty controller	Use controller test set to perform operation check. Repair or replace.
Pump starts, but	Piping	Reversed connections to Collector	Reconnect properly
cycles continuously	Sensors	Improper location	Relocate sensors as per system design or manufacturer's requirements
		Not properly secured	Secure properly and insulate from air
		Faulty	Test sensors. Replace if necessary.
Pump cycles after	Sensor wiring	Interference from radio or garage door opener, etc.	Use shielded sensor wire
dark		Radio frequency interference from close proximity to antenna.	Use shielded sensor wire
	Non return valve	Does not seat	Replace

PROBLEM	CHECK THIS	POSSIBLE CAUSE	CORRECTIVE ACTION
	Controller	Off temperature differential set point too low	Reset according to specifications
	Controller	Lightning damage	Replace controller
		Controller in "on" position	Turn to "automatic" or normal run position
		Sensor(s) out of calibration	Recalibrate
	Sensor(s)	Defective sensor	Replace
		Improper installation	Reinstall
Pump runs continuously	Sensor wiring	Interference from radio/garage door opener, etc.	Shielded cable may be necessary
			Check wiring for continuity.
		Shorted collector sensor wiring	Check wiring connections for
			weather tightness. Repair or replace.
		Open tank sensor wiring	Check wiring for continuity.
			Check wiring connections for
			weather tightness. Repair or replace.

PROBLEM	CHECK THIS	POSSIBLE CAUSE	CORRECTIVE ACTION
	Air vent	System air-locked. Air vents closed.	Disassemble and clean seat and seal. Replace if necessary.
		Improper location	Install at the highest point. Install at all high points if possible air trap locations exist. Install in true vertical position.
		Air vent cap tight	Loosen ¼ turn
Pump operates but no fluid flows from	Non return valve	Installed improperly	Check flow arrow on valve to ensure direction is per system design
collector	Collector	Flow tubes clogged	Flush collector tubing
	Rinsing valve	Rinsing valve stuck in drain position	Clean cause of sticking. Check power to valve.
	۳۱۰۰: ۵	No fluid in direct system	Open cold-water supply valve
	Fluid	Loss of fluid in indirect system	Locate leak and refill
		Loss of fluid in drain-back system	Cool system, locate leak, refill properly
	Isolation valves	Valves in closed position	Open valves
	Piping	Clogged or damaged piping	Unblock piping or repair damaged piping

PROBLEM	CHECK THIS	POSSIBLE CAUSE	CORRECTIVE ACTION	
		Broken impeller shaft	Replace shaft	
Pump operates	Pump	Impeller broken or separated from shaft	Replace impeller and/or shaft or replace pump	
but no fluid flows from		Improperly installed	Install to ensure correct flow	
collector		Not vented properly	Install in correct orientation	
		Undersized	Check pump specifications. Change pump if required.	
	Valves	Valves closed	Open valves	
Pump cycles on and off	Non return valve	Corroded or defective non return valve	Repair or replace	
after dark				
Pump runs after		Defective	Change sensor	
dark, but eventually shuts	Sensors	Improper location	Relocate	
off		Sensor not insulated	Insulate	
No power to pump with switch on	Controller output relay	Weak or failed relay	Replace relay or controller	


PROBLEM	CHECK THIS	POSSIBLE CAUSE	CORRECTIVE ACTION
	Air vents	Air trapped in system	Open automatic air vent
	Pump bearings	Dry or excessive wear	Lubricate or replace
	Pump impeller	Loose impeller	Tighten or replace impeller
Noisy pump	Pump location	Pump enclosed in small room (closet)	None
		Pump attached to wall – wall acts as amplifier	Relocate pump if noise is unacceptable
	Vent port on pump (if applicable)	Air trapped in pump	Open vent port and/or vent valve and bleed air
	Pump	Bearings need lubrication (if applicable)	Oil per manufacturer's recommendation
		Air locked	Bleed air
Noisy system			Purge system by running
	Piping	Entrapped air (direct systems only)	water up supply pipe and
			out drain on return line (isolation valves closed)
		Pipe vibration	Isolate piping from walls

PROBLEM	CHECK THIS	POSSIBLE CAUSE	CORRECTIVE ACTION
	Controller	Defective	Conduct function check and repair or replace
		Defective sensors;	Check with
Controller does not turn on		resistance problem;	multimeter (ohm).
or off in the "automatic" mode but operates in the	Sensors	sensors off scale	Correct or replace sensors.
"manual" mode		Improper contact or insulation	Ensure proper contact is made. Insulate sensors.
		Improper location	Relocate
	Wiring	Short or open	Replace or splice wire
	Controller	Defective	Repair or replace
System shuts off at wrong high limit or continues to Run	Sensors	Defective sensor	Check with multimeter (ohm) and replace
		Improper location	Relocate

PROBLEM	CHECK THIS	POSSIBLE CAUSE	CORRECTIVE ACTION
	Collector(s)	Pipe burst due to freeze or defective joint	Repair or replace. Check freeze-protection mechanisms.
	Hose connection	Clamps not tightly secured	Tighten clamps. Replace clamp or hose.
		Thermal expansion and contraction.	Replace and provide for flexibility
	Pipe joints	Joint improperly made	Reassemble
			Make a good seal. Use recommended
System leaks		Improper seal in system using	sealer. Note: glycol will leak through
		glycol solution	joints where water would not.
	Pressure relief valve	Did not reseal after opening	Replace
		Defective	Replace
		Improper pressure or temperature setting	Reset, if possible, or replace
	Valves	Valve gland nuts loose	Tighten nuts. Replace seal or packing if necessary.
		Seats deteriorating	Replace seat washers. Redress seat.
		2 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Replace valve if necessary.

PROBLEM	CHECK THIS	POSSIBLE CAUSE	CORRECTIVE ACTION
		Defective seal	Replace
			Check flow in collector loop.
	Pressure relief valve	Activates due to no	(See "Pump does not start"
		circulation through	and "Pump
Water comes off the		collector(s)	operational but no flow to collector.")
roof	Collector piping	Defective piping	Repair or replace
	Low-pressure valve	Power loss. Pressure	No action required.
	installed on collector supply line	loss from well.	•
	Piping	Insufficient slope for drainage	
		drainage [*]	Check and ensure piping
System does not drain			slopes ¼" per foot of piping
System does not drain	Event air	Does not open. Defective due to internal mechanism or corrosion.	Clean or replace

Maintenance & repair Troubleshooting frequency

Maintenance & repair Maintenance frequency

action	frequency	performed	remarks	precautions
		by:		
collectors glass	After each 3		with water and brush	collectors must be cool
cleaning	months for	user/technician		before cleaning/washing
	dirty	aser, teermieidii		
	environment			
			lift and release the lever	discharged water might be
Safety			on the temperature and	hot enough to present a scald
valve/group			safety valve to ensure	hazard and should be
functionality	annually	technician	valve operates freely	directed to suitable drain
ranctionality				using a proper hose.
			testing with electrician's	shut off power before
electric element	annually	technician	multimeter	accessing and testing the
ciccurc cicincii	armaany	teerimeian		element
electronic	annually	technician	Incoming and outgoing	
controller			signals check. Connections	
			and terminals	
hydraulic and	annually	user/technician		caution for hot fluid or
piping leak check				surfaces
electrical	annually	technician		shut off power
connections				

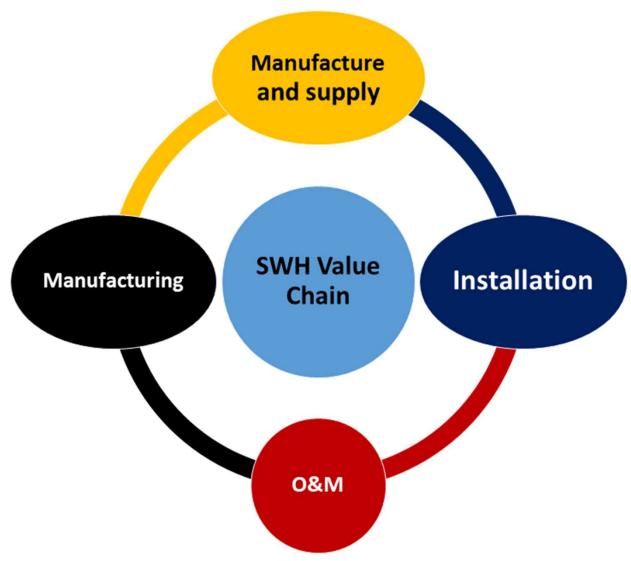
Maintenance & repair Maintenance frequency

action	frequency	performed by:	remarks	precautions
piping insulation	annually	user/technician		
condition				
visual check for		user/technician		
collector's glass	annually			
condition	•			
stability of collectors	annually	technician		
support frames				
stability of water	annually	technician		
storage tank				
expansion tank	annually	technician	Leaks check. Pressure check at idle	
			position. (2,5 bar solar ,	
			1,5 bar water)	
thermal fluid level	annually	technician		
			Leaks check. Incoming and	
thermal fluid	annually	technician	outgoing signals check.	
pump/s	annaany	teenmetan	Connections and terminals	
			Magnesium anode rod is designed	The tank should be
magnesium anode	annually	technician	to prolong the life of the glass	drained to inspect
rod	armaany	Commonan	lined tank. It is slowly consumed	and/or replace the
			thereby eliminating or minimizing	magnesium anode rod.
			corrosion of the tank	

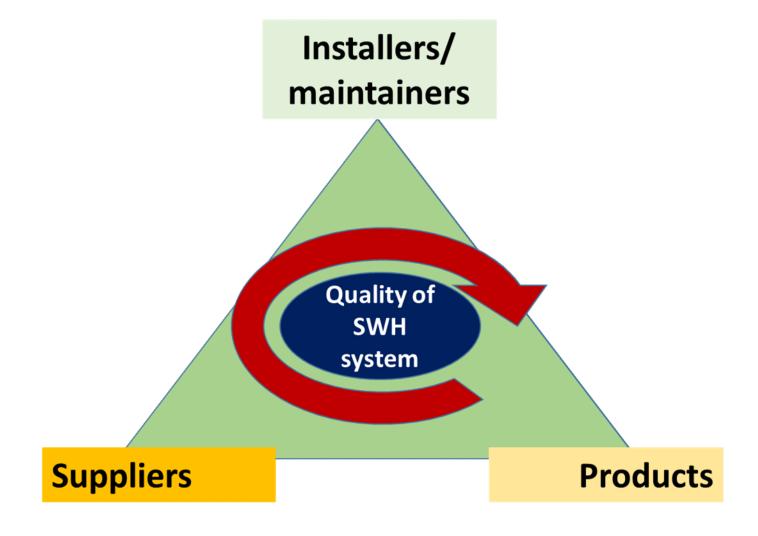
SWH: Procedural frame for Egyptian market

Training of SWH installer & maintainer

DAY4 - PROCEDURAL FRAME Egyptian market


Objective:

- ✓ Be informed on the procedural frame
 - Organizational
 - Technical
- ✓ Have knowledge on the Egyptian market
- ✓ Have idea on the role of each involved stakeholder.


Duration

- √ 2:00 hours
- ✓ From 15:00 to 17:00
- ✓ Close phones
- ✓ Don't speak to each other

DAY4 – PROCEDURAL FRAME Egyptian market value chain

DAY4 – PROCEDURAL FRAME Egyptian market quality

DAY4 - PROCEDURAL FRAME Egyptian approach for SWHIM qualification

MCI/UNIDO

- •Develop a short term competency based program for installers
- Validate the design and the program by the WG
- •Write a 30 hours SWH curricula (5 days)
- Validate the program

EXAMINATION

- Elaborate the content of assessment (04 hours)
- Validate the assessment (04 hours)
- List of necessary equipment for exam
- Minimum score definition

Training Centres and ToT

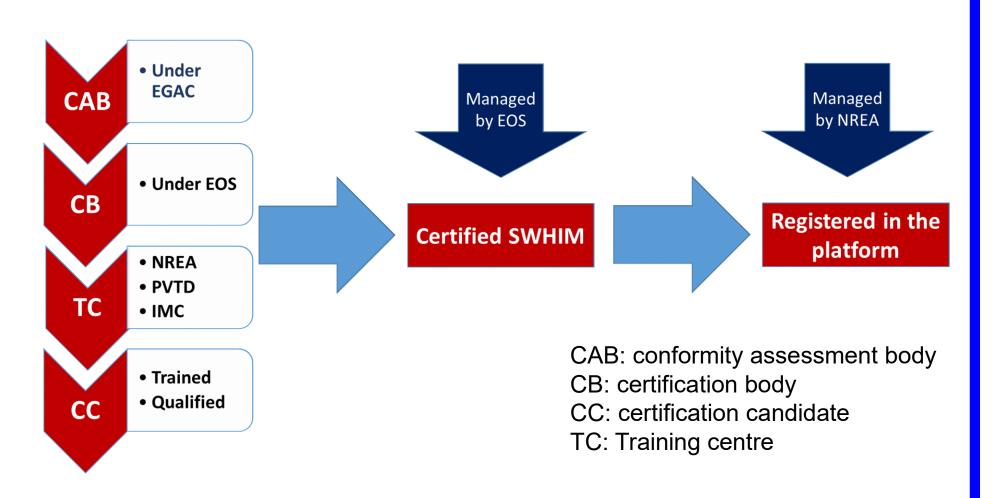
- List of eligible training centres
- Infrastructure of Centres (list of equipment and HR)
- List of trainers to be trained
- Training of trainers (ToT)

IMPLEMENTATION

Eligible Centres for training

Training of candidates

Qualified installers to be certified for the market of SWH


Validation

Validation

/alidation

Procedural frame Organizational frame

Egyptian approach for SWHIM certification

Procedural frame Organizational frame

Present the role of each stakeholder

Define the relation between installers and main stakeholders

☐ NREA: training centre of installers, manager of the SWH platform ☐ EOS: certification of installers according to ISO 17024 ☐ EGAC: accreditation of the certification body ☐ MIT: policy for quality based market development ☐ PVTD: training centre of installers ☐ IMC: training centre of installers ☐ Personal : Installer-Maintainer ☐ Supplier: SWH provider and partner of installers ☐ Beneficiary: End user and installer client

Procedural frame Organizational frame

MIT

- Develop SWH value chain
- Monitoring of SWH market development
- Manage the SWH program.

EOS-EGAC

- Define requirements of the SWH supply (minimum requirements to be respected by suppliers "Shamsi")
- Define requirements for certification of SWH services providers (minimum requirements for installation and maintenance)
- Define qualification criteria of SWH installers and maintainers (training & examination)

SEDA-Cluster

- Approve manual for installation, operation and maintenance of the SWH system
- Validate contract of services and "Q-Sol" label for installers
- Approve guarantee conditions of SWH
- Promotion of the SWH program and quality label for installation "Q-Sol"
- Awareness for quality improvement of SWH products and services
- Identify collaborative activities for SWH market development

Training provider (NREA, PVTD, IMC):

- Fulfil to requirements and specification of training centers (minimum requirement for training providers)
- Implement the training course developed and provide a certificate
- Contribute to improve the training courses through the monitoring

Procedural frame Organizational frame

NREA:

- Monitoring of SWH platform
- Manage an update the SWH platform.

Supplier:

- Respect quality of the products (minimum requirements for SWH)
- Provide testing reports justifying the requested requirements
- Select and train installers on own SWH
- Contract with installers
- Provide guarantee of products for the installers
- Provide manual for installation, operation and maintenance of the SWH system

Installer

- Provide advice to end user concerning SWH system type
- Respect quality requirements of SWH services
- Install SWH according to contract, quality requirements and "Q-Sol " label
- Provide guarantee and system O&M manual to end user
- Provide continued after sale services "ASS"

End User:

- Operation of SWH according to recommendations
- Preventive maintenance of the SWH system
- Monitoring of SWH system

Procedural frame Organizational frame

Promotion of training

SWH Cluster

Natural mature SWH Market

Quality Label Services contract Installers/ Q-Sol **SWH Manual End User** maintainers **Suppliers** Guarantee 5 years Minimum Minimum **Products** Operating manual requirements requirements Minimum requirements **Promotion for market Curricula elaboration Requirements** development **Training service Monitoring** Definition of quality requirements for products and services Minimum requirements Qualification scheme **Approved Curricula SEDA EOS Training**

EGAC

Qualification criteria

Examination

Specific SWH Market development program

provider

Procedural frame The scheme

☐ Technical specification relating to the SWH components eligibility (CHEMONICS) ☐ Guideline of best practices SWH installation and maintenance (SWH Manual for installation and maintenance) □SWH Q-Sol charter □ Supplier/installer (contract) YE3 ☐ Minimum requirements for SWH training centre ☐ Minimum requirements for SWH installer/maintainer

YE3

The min. requirementt and the technical sep. must be illustrated with charts and descrption Yahia El-Masry, 04-Aug-20

Procedural Frame Technical frame

SWH manual

- Objective
- Content
- How to use

Qualification & Certification

- Objective
- Procedures
- Obligations

Quality Charter

- Objective
- Presentation
- Discussion

Contract supplier/installers

- Objective
- Content
- Obligations

Other Specifications

Minimum requirements for installer/maintainer eligibility Technical specifications related to supplier eligibility Technical specifications relating to the SWH components eligibility

Data base (SWH platform)

Objective Procedures Obligations

PART I: DEFINITIONS & PRELIMINARY CONCEPTS

This first part presents basic concepts on Solar Water Heater (SWH) system in the international technical and commercial market contexts. It covers the following topics:

- General definitions
- Comparative analysis of SWH types
- Role of components and accessories of a SWH
- Classification of solar systems
- Sizing elements of solar water heating installations

PART II: SUPPLY & INSTALLATION OF AN INDIVIDUAL SWH

This second part of this manual describes all the steps that an installer needs to follow in order to carry out the installation of an individual SWH. It covers the following steps:

- Customer contact (preliminary visit and installation appointment)
- SWH delivery
- Prepare for installation
- SWH installation
- Commissioning
- Customer acceptance of the installation

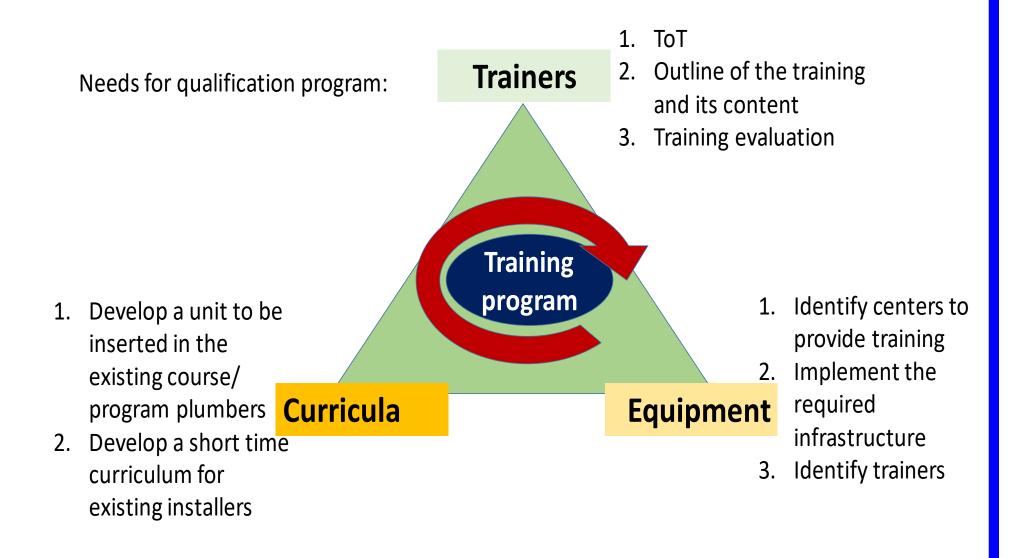
This part allows installers to control the technical offer for SWH installation in order to get the compatible choices with the constraints of each installation and users' expectations.

PART III: BEST PRACTICES AND RECOMMNDATIONS FOR PROPER AND CORRECT INSTALLATION

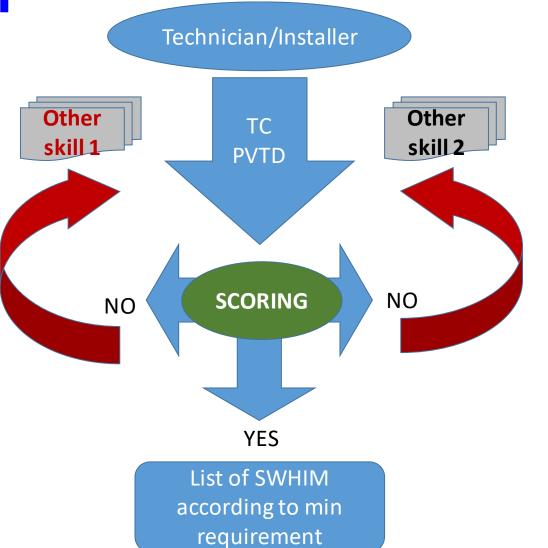
This third part includes 13 practices presented in the form of:

- Proscribed practices: describes the errors that the installer could make during the installation, these practices have to be avoided to guarantee an installation in accordance with the standards and the rules of the art
- Good practices: constitute the solutions to follow to avoid errors and installation anomalies

In addition to the prohibited practices, good installation practices are presented, with a view to optimum commissioning and operation. The operations mentioned constitute an essential complement to the technical specifications to disseminate good practices, ensure user satisfaction and reduce breakdowns and anomalies


PART IV: SOLAR WATER HEATER MAINTENANCE AND REPAIR

This part concerns the maintenance instructions to be followed by the installer and the customer to ensure a better use of the SWH, these maintenances are of three types:

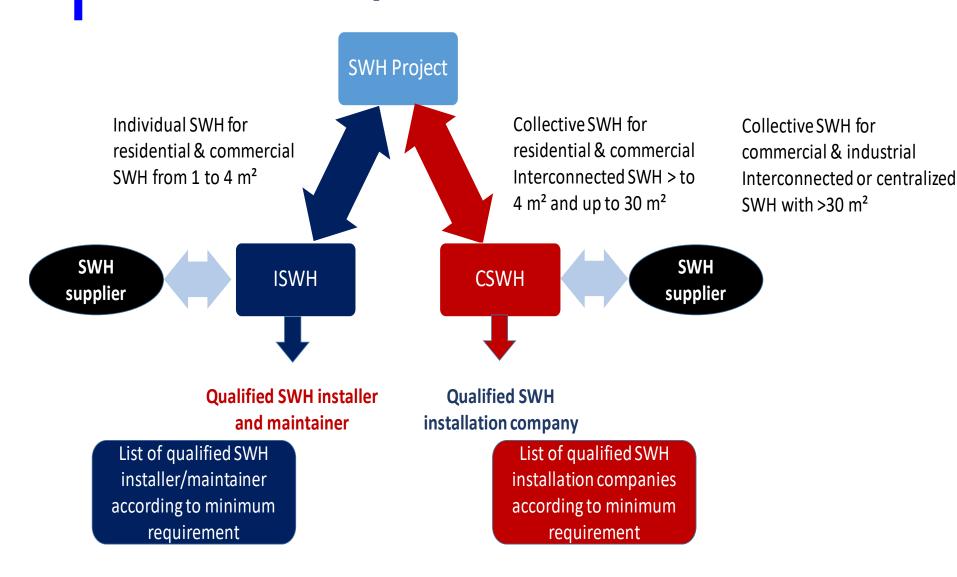

- Systematic maintenance provided by the customer
- Preventive maintenance provided by the installer; during periodic visits carried under the guarantee period
- Corrective maintenance, provided by the installer in the event of a breakdown.

This manual should be followed and respected by the SWH installers and maintainers during the installation and maintenance activities.

SWH qualification approach Content of the process

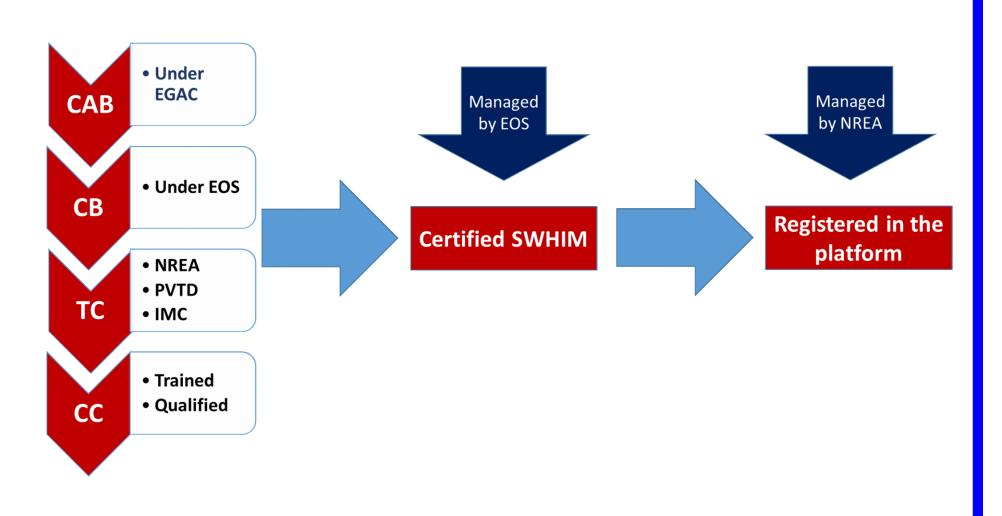
SWH qualification approach Content of the process

Competency based program for existing installers (5 days)
ToT


Minimum requirements for training Centres

Introduce SWH assessment

- Theory
- Practice
- interview


Qualified SWH installer and maintainer

SWH certification approach Content of the process

SWH certification approach Content of the process

Egyptian approach for SWHIM certification

SWH quality label Content of the process

As an installer and maintainer of SWH, I hereby undertake to respect the following ten (10) points of the quality charter that lies to:

- 1. Have the required professional skills within his own self or his company, attained through a long or a short term training as well as a confirmed practice, and be up to date within the applicable technical requirements,
- 2. Recommend and commercialize only solar systems that meet current standards and specifications and that are eligible for the Egyptian program by EOS, (Solar Key Mark or SHAMCI)
- 3. Provide the client with an advisory role, and assist him in the selection of the best available solutions suited to his needs and considering the local "solar potential", the constraints of the site, the size of the household and the available backup energies,
- 4. After the site visit, a written detailed and complete description of the proposed solar installation must be submitted to the client, setting a deadline for installation, payment conditions and legal guarantee terms, and then propose, for the client, a contract of maintenance for a minimum of 5 years,
- 5. Update the client on any changes and conditions or modalities related to the realization of the SWH installation (type, price, timeline, payment conditions, technical specifications ...),

SWH quality label Content of the process

- 6. Once the client's agreement is obtained (technical and financial proposal co-signed), insure to constitute the complete file in conformity with the requirements and carry out the ordered installation in accordance with applicable professional rules, standards and regulations as required
- 7. Set and commission the installation, then proceed to work receipt in the presence of the customer. Give him the instructions and all documents related to the guarantee and maintenance conditions; inform him about the operation of the SWH and its preventive maintenance needs
- 8. Provide the customer, as his counterpart, with a complete detailed and descriptive invoice of the service (that makes out at least the "equipment supply" and the "service fee", in accordance with the initial technical and financial description (with precise designation of installed solar equipment and references certification)),
- 9. In case of customer-reported malfunction or operational incidents on the SWH, commit to responding and to intervene in the site in a short time, and carry out necessary checks and intervention as part of the response obligations attached to the guarantee and maintenance contract
- 10. Following to any notification of the authority, any control operation that the institution would like to carry out on selected installations should be prioritized, in order to examine the SWH and check the conditions of service's implementation.

SWH contract (Supplier/Installers) Content of the process

The template of contract between supplier and installer for SWH installation and maintenance is aiming to define the roles, the tasks and the responsibilities for SWH installation and maintenance according to SWH value chain.

It aims also to organize the market, to separate between supply and services and to protect each other from any disagreement that could damage the SWH market

Suppliers of SWH and installer/maintainer must establish such contract in order to be eligible and to benefit from the existing incentive mechanism.

SWH training: Final exam

Training of SWH installer & maintainer

DAY 5 – Final Exam Theory and practice

Objective:

- ✓ Assess the knowledge of the four days training
- ✓ Evaluate skills of installers
- ✓ Scoring the candidates for the certification

Duration

- ✓ 4 hours with one coffee break
- √ Theory: From 9:00 to 11:00
- ✓ Practice: From 11:30 to 13:30
- ✓ Close phones
- ✓ Don't speak to each other

Final exam Part 1

Theory Post evaluation

- √ 40 QCM
- √ 2:00 hours

Organization:

- ✓ Individual working
- ✓ Read the entire exam
- ✓ Give one or more responses for each question
- ✓ Follow the trainer instructions
- ✓ Use the manual of installation
- ✓ Remember to write you name

Final exam Part 2

Practical Post evaluation

- Real installation and maintenance
- √ (2:00 hours)

Organization:

- ✓ Work in small groups
- ✓ Identify SWH components
- √ Identify tools
- ✓ Follow the examiner instructions
- ✓ Follow the manual of installation
- ✓ Respect safety requirements
- ✓ Have the individual safety equipment's